Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Plaka Kombinasyonlarında HHO Hücresinin Performansının Tahmin Edilmesinde Bulanık Mantık Yaklaşımı

Yıl 2018, Cilt: 6 Sayı: 1, 70 - 87, 01.03.2018
https://doi.org/10.15317/Scitech.2018.116

Öz

Bu çalışmada, hidroksi (HHO) hücresi farklı plaka kombinasyonlarında akım, sıcaklık ve debi yönünden deneysel olarak incelenmiş ve kural tabanlı Mamdani tipi bulanık mantık tekniği ile modellenmiştir. Bulanık mantık modelinde, giriş parametreleri plaka sayısı ve zaman; çıkış parametreleri akım, sıcaklık ve debi olarak tanımlanmıştır. Plaka boyutları 10x10 cm2 ve 11x11 cm2’dır. Farklı plaka kombinasyonlarında akım, sıcaklık ve debi ölçülmüştür. Bu çalışmada, deneysel çalışmada yapılmayan değerlerin bulanık mantık ile tahmin edilmesi işlenmiştir. 10x10 cm2 ile 11x11 cm2 plaka boyutlarında deneysel olarak yapılmayan 90. ile 270. saniye arasında olan 80 değer, bulanık mantık ile tahmin ettirilmiştir. 11-2 plaka kombinasyonu ve t=90s için bulanık mantık modeli ile tahmin edilen akım değeri, deneysel çalışmada 11-2 plaka kombinasyonu ve t=60s için belirlenen akım değerinden az; deneysel çalışmada 11-2 plaka kombinasyonu ve t=120s için belirlenen akım değerinden fazladır. Deneysel çalışma ve bulanık mantık ile elde edilen değerler üç farklı istatistik yöntemi kullanılarak karşılaştırılmıştır. Bu yöntemler; ortalama karesel hatanın karekökü (RMSE), ortalama mutlak hata (MAE) ve determinasyon katsayısı (R2)’dır. 10x10 cm2 plaka boyutu için, RMSE, MAE ve R2 değerleri sırasıyla 0.13, 0.111 ve %96.44 olarak belirlenmiştir. 11x11 cm2 plaka boyutu için, RMSE, MAE ve R2 değerleri sırasıyla 0.07926, 0.06466 ve %98.44 olarak belirlenmiştir. Sonuç olarak, bulanık mantık ile elde edilen değerler, deneysel çalışmada tespit edilen değerler ile uyum göstermiştir. Bu çalışmada, farklı plaka boyutlarında HHO hücresinin performansının tahmin edilmesinde, bulanık mantık modelleme tekniğinin kullanılması önerilmektedir.

Kaynakça

  • Ata, S., 2015, PEM Yakıt Hücresinin Membran Performansının Deneysel Olarak İncelenmesi ve Enerji Ayrışımı Olayının Bulanık Mantık Yöntemi ile Modellenmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Ata, S., Dincer, K., “Rule-based Mamdani-type Fuzzy Modeling of Performance Proton Exchange Membrane Fuel Cell With Carbon Nanotube”, 15th International Multidisciplinary Scientific GeoConference SGEM 2015, Albena, Bulgaria, pp. 487-494, 18-24 June 2015.
  • Ata, S., Dincer, K., “Anot Tarafı Karbon Nanotüp İle Kaplanmış PEM Yakıt Hücresi Performansının Bulanık Mantık Yöntemiyle Modellenmesi”, Ulusal Hidrojen Teknolojileri Kongresi UHTEK-2015, İstanbul, Türkiye, 20-23 Aralık 2015.
  • Ata, S., Dincer, K., “Improving the Performance of Proton Exchange Membrane Fuel Cell Using Fuzzy Logic”, 18th International Conference on Energy and Sustainable Development, Paris, France, pp. 16-17, 16-17 May 2016.
  • Bölgen, M., 2010, Fuzzy Logic and Data Mining Technıques in Evaluating of Credit Risks of Companies, Master Thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylül University, İzmir.
  • Chakrapani, K., Neelamegam, P., 2011, “Optimization of Fuel Consumption Using HHO in HDL Technique Verified in FPGA”, Journal of Theoretical and Applied Information Technology, Vol. 31, pp. 140-146.
  • Dincer, K., Ongun, R., Dede, O., 2013, “HHO Hücresinin Performansının Deneysel Olarak Incelenmesi”, Selçuk Üniversitesi Journal of Technical-Online, Vol. 12 (3), ISSN 1302/6178.
  • Dincer, K., Tasdemir, S., Baskaya, S., Ucgul, I., Uysal, B. Z., 2008, “Fuzzy Modeling of Performance of Counterflow Ranque-Hilsch Vortex Tubes with Different Geometric Constructions”, Numerical Heat Transfer, Part B: Fundamentals, Vol. 54 (6), pp. 499-517.
  • Esteves, R.M., 2009, Data Fusion Algorithms for Assessing Sensors Accuracy in an Oil Production Well - A Bayesian approach, MSc Thesis, University of Stavanger Faculty of Science and Technology.
  • Işıktaş, A., Dincer, K., Ata, S., “Comparison Between the Effects of Different Types of Membership Functions on Fuzzy Logic for Hydroxy Dry Cell Performance”, 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Albena, Bulgaria, 28th June - 7th July 2016.
  • Kalogirou, S.A., 2003, “Artificial Intelligence for the Modeling and Control of Combustion Processes: A Review”, Progress in Energy and Combustion Science, Vol. 29, pp. 515–566.
  • Keshwani, D.R., Jones, D. D., Meyer, G.E.R, Brand, M., 2008, “Rule-based Mamdani-type Fuzzy Modeling of Skin Permeability”, Applied Soft Computing, Vol. 8, pp. 285-294.
  • Kim, Y., Kim, S., 1999, “An Electrical Modelling and Fuzzy Logic Control of a Fuel Cell Generation System”, IEEE Transactions on Energy Conversion, Vol. 14, pp. 239-244.
  • Leelakrishnan, E., Lokesh, N., Suriyan, H., 2013, “Performance and Emission Characteristics of Brown’s Gas Enriched Air in Spark Ignition Engine”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, pp. 393-404.
  • Madyira, D., Harding, W., “Effect of HHO on Four Stroke Petrol Engine Performance”, 9th South African Conference on Computational and Applied Mechanics, 14-16 Jan 2014.
  • Özek, A., Sinecen, M., 2004, “Klima Sistem Kontrolünün Bulanık Mantık ile Modellemesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 10, pp. 353-358.
  • Sakthıvel, S., 2014, “An Experimental Assessment of Performance and Exhaust Emission Characteristics by Addition of Hydroxy (HHO) Gas in Twin Cylinder C.I. Engine”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3(2), pp. 60-65.
  • Shakhawat, C., Tahir, H., Neil, B., 2006, “Fuzzy Rule-Based Modelling for Human Health Risk from Naturally Occurring Radioactive Materials in Produced Water”, Journal of Environmental Radioactivity, Vol. 89, pp. 1-17.
  • Tiryaki, A.E., Kazan, R., 2007, “Bulaşık Makinesinin Bulanık Mantık ile Modellenmesi”, Mühendis ve Makine, Vol. 48, pp. 3-8.
  • Tong, S.W., Qian, D.W., Fang, J.J., Li, H.X., 2013, “Integrated Modelling and Variable Universe Fuzzy Control of a Hydrogen-Air Fuel Cell System”, International Journal of Electrochemical Science, Vol. 8(3), pp. 3636-3652.
  • Yıldız, Ş., Kişoğlu, S., 2011, “Bulanık Mantık Yaklaşımı ile Hazır Giyimde Beden Numarası Belirleme”, E-Journal of New World Sciences Academy, Vol. 6, pp. 12-22.

A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION

Yıl 2018, Cilt: 6 Sayı: 1, 70 - 87, 01.03.2018
https://doi.org/10.15317/Scitech.2018.116

Öz

In this study, hydroxy (HHO) dry cell with different plate combination performances in terms of current, temperature and flow rate were experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Input parameters plate number and time; output parameters current, temperature and flow rate were described by RBMTF if-the rules. The dimensions of the plates were 10x10 cm2 and 11x11 cm2. Current and temperature were measured for the different plate combination. This paper presents a fuzzy logic based study for estimating the uncertainty of the HHO drycell parameters. The 80 values between 90th and 270th seconds, which are not obtained from experimental work for 10x10 cm2 and 11x11 cm2 current, temperature and flow rate are predicted by fuzzy logic method. One of the results is; the current value predicted by RBMTF for the 11-2 plate combination and t=90 s is less than the current value from the results of the experimental work for the 11-2 plate combination and t=60 s, but higher than the current value from the results of the experimental work for 11-2 plate combination and t=120s.The comparison between experimental data and RBMTF is done by using three different statistical method. These are, root mean square error (RMSE), mean absolute error (MAE) and the coefficient of multiple determination (R2). For 10x10 cm2 dimension plate, RMSE, MAE and R2 for the current is 0.13, 0.111 and 96.44% respectively. For 11x11 cm2 dimension plate, RMSE, MAE and R2 for the current is 0.07926, 0.06466 and 98.44% respectively. coefficient of multiple determinations (R2). As a result, RBMTF model has shown satisfying relation with experimental results, which suggests an alternative approach to estimation of performance HHO dry cell with different plate combination.

Kaynakça

  • Ata, S., 2015, PEM Yakıt Hücresinin Membran Performansının Deneysel Olarak İncelenmesi ve Enerji Ayrışımı Olayının Bulanık Mantık Yöntemi ile Modellenmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Ata, S., Dincer, K., “Rule-based Mamdani-type Fuzzy Modeling of Performance Proton Exchange Membrane Fuel Cell With Carbon Nanotube”, 15th International Multidisciplinary Scientific GeoConference SGEM 2015, Albena, Bulgaria, pp. 487-494, 18-24 June 2015.
  • Ata, S., Dincer, K., “Anot Tarafı Karbon Nanotüp İle Kaplanmış PEM Yakıt Hücresi Performansının Bulanık Mantık Yöntemiyle Modellenmesi”, Ulusal Hidrojen Teknolojileri Kongresi UHTEK-2015, İstanbul, Türkiye, 20-23 Aralık 2015.
  • Ata, S., Dincer, K., “Improving the Performance of Proton Exchange Membrane Fuel Cell Using Fuzzy Logic”, 18th International Conference on Energy and Sustainable Development, Paris, France, pp. 16-17, 16-17 May 2016.
  • Bölgen, M., 2010, Fuzzy Logic and Data Mining Technıques in Evaluating of Credit Risks of Companies, Master Thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylül University, İzmir.
  • Chakrapani, K., Neelamegam, P., 2011, “Optimization of Fuel Consumption Using HHO in HDL Technique Verified in FPGA”, Journal of Theoretical and Applied Information Technology, Vol. 31, pp. 140-146.
  • Dincer, K., Ongun, R., Dede, O., 2013, “HHO Hücresinin Performansının Deneysel Olarak Incelenmesi”, Selçuk Üniversitesi Journal of Technical-Online, Vol. 12 (3), ISSN 1302/6178.
  • Dincer, K., Tasdemir, S., Baskaya, S., Ucgul, I., Uysal, B. Z., 2008, “Fuzzy Modeling of Performance of Counterflow Ranque-Hilsch Vortex Tubes with Different Geometric Constructions”, Numerical Heat Transfer, Part B: Fundamentals, Vol. 54 (6), pp. 499-517.
  • Esteves, R.M., 2009, Data Fusion Algorithms for Assessing Sensors Accuracy in an Oil Production Well - A Bayesian approach, MSc Thesis, University of Stavanger Faculty of Science and Technology.
  • Işıktaş, A., Dincer, K., Ata, S., “Comparison Between the Effects of Different Types of Membership Functions on Fuzzy Logic for Hydroxy Dry Cell Performance”, 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Albena, Bulgaria, 28th June - 7th July 2016.
  • Kalogirou, S.A., 2003, “Artificial Intelligence for the Modeling and Control of Combustion Processes: A Review”, Progress in Energy and Combustion Science, Vol. 29, pp. 515–566.
  • Keshwani, D.R., Jones, D. D., Meyer, G.E.R, Brand, M., 2008, “Rule-based Mamdani-type Fuzzy Modeling of Skin Permeability”, Applied Soft Computing, Vol. 8, pp. 285-294.
  • Kim, Y., Kim, S., 1999, “An Electrical Modelling and Fuzzy Logic Control of a Fuel Cell Generation System”, IEEE Transactions on Energy Conversion, Vol. 14, pp. 239-244.
  • Leelakrishnan, E., Lokesh, N., Suriyan, H., 2013, “Performance and Emission Characteristics of Brown’s Gas Enriched Air in Spark Ignition Engine”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, pp. 393-404.
  • Madyira, D., Harding, W., “Effect of HHO on Four Stroke Petrol Engine Performance”, 9th South African Conference on Computational and Applied Mechanics, 14-16 Jan 2014.
  • Özek, A., Sinecen, M., 2004, “Klima Sistem Kontrolünün Bulanık Mantık ile Modellemesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 10, pp. 353-358.
  • Sakthıvel, S., 2014, “An Experimental Assessment of Performance and Exhaust Emission Characteristics by Addition of Hydroxy (HHO) Gas in Twin Cylinder C.I. Engine”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3(2), pp. 60-65.
  • Shakhawat, C., Tahir, H., Neil, B., 2006, “Fuzzy Rule-Based Modelling for Human Health Risk from Naturally Occurring Radioactive Materials in Produced Water”, Journal of Environmental Radioactivity, Vol. 89, pp. 1-17.
  • Tiryaki, A.E., Kazan, R., 2007, “Bulaşık Makinesinin Bulanık Mantık ile Modellenmesi”, Mühendis ve Makine, Vol. 48, pp. 3-8.
  • Tong, S.W., Qian, D.W., Fang, J.J., Li, H.X., 2013, “Integrated Modelling and Variable Universe Fuzzy Control of a Hydrogen-Air Fuel Cell System”, International Journal of Electrochemical Science, Vol. 8(3), pp. 3636-3652.
  • Yıldız, Ş., Kişoğlu, S., 2011, “Bulanık Mantık Yaklaşımı ile Hazır Giyimde Beden Numarası Belirleme”, E-Journal of New World Sciences Academy, Vol. 6, pp. 12-22.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yusuf Yılmaz

Sadık Ata

Gürol Önal

Abdullah Işıktaş Bu kişi benim

Kevser Dıncer

Yayımlanma Tarihi 1 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Yılmaz, Y., Ata, S., Önal, G., Işıktaş, A., vd. (2018). A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 6(1), 70-87. https://doi.org/10.15317/Scitech.2018.116
AMA Yılmaz Y, Ata S, Önal G, Işıktaş A, Dıncer K. A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION. sujest. Mart 2018;6(1):70-87. doi:10.15317/Scitech.2018.116
Chicago Yılmaz, Yusuf, Sadık Ata, Gürol Önal, Abdullah Işıktaş, ve Kevser Dıncer. “A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6, sy. 1 (Mart 2018): 70-87. https://doi.org/10.15317/Scitech.2018.116.
EndNote Yılmaz Y, Ata S, Önal G, Işıktaş A, Dıncer K (01 Mart 2018) A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6 1 70–87.
IEEE Y. Yılmaz, S. Ata, G. Önal, A. Işıktaş, ve K. Dıncer, “A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION”, sujest, c. 6, sy. 1, ss. 70–87, 2018, doi: 10.15317/Scitech.2018.116.
ISNAD Yılmaz, Yusuf vd. “A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6/1 (Mart 2018), 70-87. https://doi.org/10.15317/Scitech.2018.116.
JAMA Yılmaz Y, Ata S, Önal G, Işıktaş A, Dıncer K. A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION. sujest. 2018;6:70–87.
MLA Yılmaz, Yusuf vd. “A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 6, sy. 1, 2018, ss. 70-87, doi:10.15317/Scitech.2018.116.
Vancouver Yılmaz Y, Ata S, Önal G, Işıktaş A, Dıncer K. A FUZZY LOGIC APPROACH FOR THE ESTIMATION OF PERFORMANCE HYDROXY DRY CELL WITH DIFFERENT PLATE COMBINATION. sujest. 2018;6(1):70-87.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz