Araştırma Makalesi
BibTex RIS Kaynak Göster

Measuring the Innovation Service Quality of Artificial Intelligence Chatbot: Comparison of E-Commerce, Health and Gastronomy Platforms

Yıl 2025, Sayı: 58, 119 - 143, 30.12.2025
https://doi.org/10.52642/susbed.1623285

Öz

Service quality satisfaction levels vary across sectors based on customer interactions with Artificial Intelligence Chatbots (AICB). This study aims to compare the use of AICB in three areas e-commerce, healthcare, and gastronomy in terms of customer satisfaction. A mixed-methods approach was employed, with quantitative methods applied first, followed by qualitative methods. A relationship was determined among the data obtained. In the quantitative dimension of the research, a sample of 420 people was determined by convenience sampling from among customers using AICB in three different areas, such as e-commerce, healthcare, and gastronomy. In the qualitative dimension, eight customers in each of the three areas who used AICB and had at least two or more experiences formed the working group. Quantitative data were obtained from 5 survey questions and 34 Likert-type service quality scale questions, while qualitative data were obtained from responses to 6 semi-structured interview questions directed at 8 participants from each of three areas (e-commerce, health, and gastronomy). Multiple comparison statistical tests were used to analyze the data, while content analysis was used to analyze the qualitative data. The data obtained from the interviews were coded and analyzed using content analysis to identify themes. The results of the study compared customer satisfaction with AICB experiences in the three areas. The study concluded that the services provided by AICB systems differ based on data flow speed, data diversity, and data correlation. Recommendations were made for improving AICB customer relations by designing AICB systems according to specific standards and areas.

Kaynakça

  • Acayıp, E. (2024). The effect of artificial intelligence supported chatbot service quality on customer satisfaction. Current Perspectives in Social Sciences, 28(4), 477-490. https://doi.org/10.53487/atasobed.1438079
  • Aleem, A. K., & Loureiro, S. M. (2021). Luxury brands on Instagram: A netnographic approach. Fashion, Design & Marketing Management in the Digital Environment (pp. 432-444). Seoul: 2021 GFMC/KSMS International Conference.
  • Alpkoçak, A. (2024). Sağlıkta açıklanabilir yapay zekâ. TOTBİD Dergisi S, 23, 18-19. https://doi.org/10.5578/totbid.dergisi.2024.04
  • Andrikyan, W., Sametinger, S.M., Kosfeld, F., et al, (2025). Artificial intelligence-powered chatbots in search engines: a cross-sectional study on the quality and risks of drug information for patients, BMJ Quality & Safety; 34, 100-109. https://doi.org/10.1136/bmjqs-2024-017476
  • Arora, P., & Narula, S. (2018). Linkages between Service quality, customer satisfaction and customer loyalty: A literature review. The IUP Journal of Marketing Management, 17, 30-54.
  • Brandtzaeg, P.B. & Folstad, A. (2017). Why People Use Chatbots. 2017 International Conference on Internet Science, Thessaloniki, 22-24 November 2017, 377-392. https://doi.org/10.1007/978-3-319-70284-1_30
  • Bull, S., Hood, S., Mumby, S., Hendrickson, A., Silvasstar, J., Salyers, A. (2024). Feasibility of using an artificially intelligent chatbot to increase access to information and sexual and reproductive health services. Dıgıtal Health,10. https://doi.org/10.1177/20552076241308994
  • Calantone, R. J., Di Benedetto, A., & Rubera, G. (2018). Launch activities and timing in new product development. Journal of Global Scholars of Marketing Science, 28(1), 33–41. https://doi.org/10.1080/21639159.2017.1410771
  • Cai, S., & Jun, M. (2003). Internet users' perceptions of online service quality: A comparison of online buyers and information searchers. Managing Service Quality: An International Journal, 13(6), 504-519. https://doi.org/10.1108/09604520310506568
  • Cenfetelli, R., Benbasat, I., & Al-Natour, S. (2008). Çevrimiçi hizmetlerin ne ve nasıl olduğu konusunu ele almak: E-iş başarısı için hizmet içeriği ve hizmet kalitesinin karşılaştırılması. Inform. Syst. Res. ,19, 161–181. https://doi.org/10.1287/isre.1070.0163
  • Cheah, M., Gan, Y., Altice, F., Wickersham, J., Shrestha, R., Salleh, N., Ng, K., Azwa, I., Balakrishnan, V., Kamarulzaman, A., & Ni, Z. (2024). Testing the Feasibility and Acceptability of Using an Artificial Intelligence Chatbot to Promote HIV Testing and Pre-Exposure Prophylaxis in Malaysia: Mixed Methods Study. JMIR Hum Factors, 11, 2055. https://doi.org/10.2196/52055
  • Chen Q., Yeming, G., Yaobin, L., & Jing, T. (2022). Classifying and measuring the service quality of AI chatbot in frontline service. Journal of Business Research, 145(5), 552-568. https://doi.org/10.1016/j.jbusres.2022.02.088
  • Chatelan, A., Clerc, A., & Fonta, P.A. (2023). ChatGPT and future artificial ıntelligence chatbots: What may be the ınfluence on credentialed nutrition and dietetics practitioners? J Acad Nutr Diet. 123(11),1525-1531. https://doi.org/10.1016/j.jand.2023.08.001
  • Çiçekdağı, M. (2024). Yapay zekâ destekli sohbet robotları ile tatil rotası belirleme: Karşılaştırmalı bir analiz. Çatalhöyük Uluslararası Turizm ve Sosyal Araştırmalar Dergisi (CUTSAD), 12, 1-15. https://doi.org/10.58455/cutsad.1470842
  • Correa, T., Hinsley, A. W., & de Zúñiga, H. G. (2010). Who interacts on the web?: The intersection of users’ personality and social media use. Computers in Human Behavior, 26(2), 247–253. https://doi.org/10.1016/j.chb.2009.09.003
  • Coyle, C. E., & Dugan, E. (2012). Social ısolation, loneliness and health among older adults. Journal of Aging and Health, 24(8), 1346-1363. https://doi.org/10.1177/0898264312460275
  • Dabholkar, P.A., Shepherd, C.D. & Thorpe, D.I. (2000). A comprehensive framework for service quality: An investigation of critical conceptual and measurement issues through a longitudinal study. Journal of Retailing, 76(2), 139-73. https://doi.org/10.1016/S0022-4359(00)00029-4
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of ınformation technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
  • De Keyser, A., Köcher, S., Alkire, L., Verbeeck, C., & Kandampully, J. (2019). Frontline service technology infusion: Conceptual archetypes and future research directions. Journal of Service Management, 30(1),156–183. https://doi.org/10.1108/JOSM-03-2018-0082
  • Ercan, F. (2020). Turizm Pazarlamasında Yapay Zekâ Teknolojilerinin Kullanımı ve Uygulama Örnekleri. Ankara Hacı Bayram Veli Üniversitesi Turizm Fakültesi Dergisi, 23(2), 394-410. https://doi.org/10.34189/tfd.23.02.009
  • Forbes. (2017). Ten customer service and customer experience trends for 2017.https://www.forbes.com/sites/shephyken/2017/01/07/10-customer-service-and-customerexperience-cx-trends-for-2017/#145a272c75e5
  • Gray, H.M., Gray, K., & Wegner, D.M. (2007). Zihin algısının boyutları. Bilim, 315, 619. https://doi.org/10.1126/science.1134475
  • Güvenol, B., Kömürcü Sarıbaş, S., & Güler, M. E. (2023). İzmir mutfağının yapay zekâ tabanlı sohbet robotları ile incelenmesi. Journal of Travel and Tourism Research, 23(23), 126-144.
  • Hsu, C. L., & Lin, J. C. C. (2023). Understanding the user satisfaction and loyalty of customer service chatbots. Journal of Retailing and Consumer Services, 71, 103211. https://doi.org/10.1016/j.jretconser.2022.103211
  • Insider-Trends. (2017). Retail trends fact fle 2017: physical retail. Retrieved September 21, 2020, from http://www.insider-trends.com/retail-trends-factfile-2017-physical-retail/
  • Jenkins, MC., Churchill, R., Cox, S., & Smith, D. (2007). Analysis of User Interaction with Service Oriented Chatbot Systems. In: Jacko, J.A. (eds) Human-Computer Interaction. HCI Intelligent Multimodal Interaction Environments. HCI 2007. Lecture Notes in Computer Science, vol 4552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73110-8_9
  • Jiang, J. J., Klein, G., & Carr, C. L. (2002). Measuring information system service quality: SERVQUAL from the other side. MIS Quarterly, 26(2), 145–166. https://doi.org/10.2307/4132324
  • Johnson, G. J., Bruner, G. C. II, & Kumar, A. (2006). Interactivity and Its Facets Revisited: Theory and Empirical Test. Journal of Advertising, 35(4), 35–52. https://doi.org/10.2753/JOA0091-3367350403
  • Jörling, M., Böhm, R., ve Paluch, S. (2019). Service robots: Drivers of perceived responsibility for service outcomes. Journal of Service Research, 22(4),404-420. https://doi.org/10.1177/1094670519842334
  • Karahan, K. (2000). Hizmet pazarlaması. İstanbul: Beta Yayınları Dağıtım A.Ş.
  • Karasar, N. (2019). Bilimsel irade algı çerçevesi ile bilimsel araştırma yöntemi: Kavramlar, ilkeler, teknikler (34. Baskı). Ankara: Nobel Akademik Yayıncılık.
  • Korfiatis, N., Stamolampros, P., Kourouthanassis, P., & Sagiadinos, V. (2019). Measuring service quality from unstructured data: A topic modeling application on airline passengers’ online reviews. Expert Systems with Applications, 116, 472–486. https://doi.org/10.1016/j.eswa.2018.09.037
  • Kulviwat S.L, Bruner G. C., Kumar A., Nasco S. A., Clark T., (2007). Toward a unified theory of consumeracceptance technology. Physicology Marketing, 24(12), 1059-1084. https://doi.org/10.1002/mar.20196
  • Letheren, K. & Glavas, C. (2017) Embracing the bots: how direct to consumer advertising is about to change forever. The Conversation, 2017.
  • Lee, P., Bubeck, S., &Petro, J. (2023). Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N Engl J Med., 388(13), 1233-1239. https://doi.org/10.1056/NEJMsr2214184
  • Lee, H., & Chang, E. (2011). Consumer attitudes toward online mass customization: An application of extended technology acceptance model. Journal of Computer-Mediated Communication, 16(2), 171–200. https://doi.org/10.1111/j.1083-6101.2010.01530.x
  • Lent, H.C., Ortner, V.K., Karmisholt, K.E., Wiegell, S.R., Nissen, C.V., Omland, S.H., Kamstrup, M.R., Togsverd-Bo, K., & Haedersdal, M. (2024). A chat about actinic keratosis: Examining capabilities and user experience of ChatGPT as a digital health technology in dermato-oncolog. Journal of the European Academy of Dermatology and Venereology Clin Pract.,3, 258-265. https://doi.org/10.1002/jvc2.263
  • Li, J. (2023). Security Implications of AI Chatbots in Health Care.J Med Internet Res, 25: e47551 https://doi.org/10.2196/47551
  • Liu, M., Yaxin, Y., Ren, Y., Jia, Y., Ma, H., Luo, J., Fang, S., Qi, M., Zhang, L. (2024). What influences consumer AI chatbot use intention? An application of the extended technology acceptance model. Journal of Hospitality and Tourism Technology ,15 (4), 667–689. https://doi.org/10.1108/JHTT-03-2023-0057
  • Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 11, 1–11.
  • Maher, C., Singh, B., Wylde, A., & Chastin, S. (2024). Virtual health assistants: a grand challenge in health communications and behavior change. Front Digit Health, 6,1418695. https://doi.org/10.3389/fdgth.2024.1418695
  • Maklan, S., Antonetti, P., & Whitty, S. (2017). A better way to manage customer experience: Lessonsfrom the royal bank of Scotland. California Management Review, 59(2), 92–115. https://doi.org/10.1177/0008125617695285
  • Mittal, B. (1999). The advertising of services: Meeting the challenge of ıntangibility. Journal of Service Research, 2(1), 98-116. https://doi.org/10.1177/109467059921008
  • Morgan-Thomas, A. & Veloutsou, C. (2013). Beyond technology acceptance: Brand relationships and online brand experience. Journal of Business Resources, 66, 21-27. https://doi.org/10.1016/j.jbusres.2011.07.019
  • Nysveen, H., Pedersen, P.E. & Thorbjornsen, H. (2005). Explaining Intention to Use Mobile Chat Services: Moderating Effects of Gender. Journal of Consumer Marketing, 22, 247-256. https://doi.org/10.1108/07363760510611671
  • O’Neill, M., Wright, C., & Fitz, F. (2001). Quality evaluation in online service environments: An application of the importance-performance measurement technique. Managing Service Quality, 11(6), 402–417. https://doi.org/10.1108/EUM0000000006519
  • Parasuraman, A., Zeithaml, V.A. & Berry, L.L. (1988). SERVQUAL: A multipleıtem scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40.
  • Parasuraman, A., Zeithaml, V.A. & Malhotra, A. (2005) E-S-Qual: A multiple-ıtem scale for assessing electronic service quality. Journal of Service Research, 7, 213-233. https://doi.org/10.1177/1094670504271156
  • Perrey, J., & Spillecke, D. (2011). Retail Marketing and Branding: A Definitive Guide to Maximizing ROI.John Wiley & Sons.
  • Piercy, N. (2014). Online service quality: Content and process of analysis. Journal of Marketing Management, 30(7–8), 747–785. https://doi.org/10.1080/0267257X.2013.839571
  • Sato, A., Haneda, E., Hiroshima, Y., & Narimatsu, H. (2024). Preliminary screening for hereditary breast and ovarian cancer using an aı chatbot as a genetic counselor: Clinical Study. J Med Internet Res, 26,48914. https://doi.org/10.2196/48914
  • Sencer, M. (1989). Toplum bilimlerinde yöntem. İstanbul: Beta Basım Yayım Dağıtım
  • Şencan, H., & Fidan, Y. (2020). Likert verilerinin kullanıldığı keşfedici faktör analizlerinde normallik varsayımı ve faktör çıkarma üzerindeki etkisinin SPSS, FACTOR ve PRELIS yazılımlarıyla sınanması. BMIJ, 8(1), 640-687. https://doi.org/10.15295/bmij.v8i1.1395
  • Tam, W., Huynh, T., Tang, A., Luong, S., Khatri, Y., & Zhou, W. (2023). Nursing education in the age of artificial intelligence powered Chatbots (AI-Chatbots): Are we ready yet? Nurse Education Today, 129, 105917.https://doi.org/10.1016/j.nedt.2023.105917
  • Temsah, M.-H., Aljamaan, F., Malki, KH, Alhasan, K., Altamimi, I., Aljarbou, R., Bazuhair, F., Alsubaihin, A., Abdulmajeed, N., Alshahrani, FS, Temsah, R., Alshahrani, T., Al-Eyadhy, L., Alkhateeb, SM, Saddik, B., Halwani, R., Jamal, A., Al-Tawfiq, JA ve Al-Eyadhy, A. (2023). ChatGPT ve dijital sağlığın geleceği: Sağlık çalışanlarının algıları ve beklentileri üzerine bir araştırma. Sağlık, 11 (13), 1812. https://doi.org/10.3390/healthcare11131812
  • Thomas, J. J., Becker, K. R., Kuhnle, M. C., Jo, J. H., Harshman, S. G., Wons, O. B., Keshishian, A. C., Hauser, K., Breithaupt, L., Liebman, R. E., Misra, M., Wilhelm, S., Lawson, E. A., & Eddy, K.T. (2020). Cognitive-behavioral therapy for avoidant/restrictivefood intake disorder: Feasibility, acceptability, and proof-ofconcept for children and adolescents. International Journal ofEating Disorders, 53(10). https://doi.org/10.1002/eat.23355
  • Vena-Oya, J., Castaneda-García, J.A., & Burys, J. (2024). Chatbot service quality: An experiment comparing two countries with different levels of digital literacy. Tour. Hosp., 5, 276–289. https://doi.org/10.3390/tourhosp5020018
  • Vern, P., Miftah, N., & Panghal, A. (2022). Digital technology: Implementation challenges and strategies in agri-food supply chain. In Agri-food 4.0, 27, 17–30. https://doi.org/10.1108/S1877-636120220000027002
  • Wang, L. C., Baker, J., Wagner, J. A., & Wakefield, K. (2007). Can a retail web site be social? Journal of Marketing, 71(3), 143-157. https://doi.org/10.1509/jmkg.71.3.143. https://doi.org/10.1509/jmkg.71.3.143
  • Wang, Y. F., & Petrina, S. (2013). Using learning analytics to understand the design of an intelligent language tutor-chatbot lucy. Editorial Preface, 4, 124–131. https://doi.org/10.14569/IJACSA.2013.041117
  • Walther, J. B., Liang, Y. J., Ganster, T., Wohn, D. Y., & Emington, J. (2012). Online reviews, helpfulness ratings, and consumer attitudes: An extension of congruity theory to multiple sources in Web 2.0. Journal of Computer-Mediated Communication, 18(1), 97–112.
  • Wirtz, J., & Zeithaml, V. (2018). Cost-effectiveservice excellence. Journal of the Academy of Marketing Science, 46(1), 59–80. https://doi.org/10.1007/s11747-017-0560-7
  • Yau, J.Y.S., Saadat, S., Hsu, E., Murphy, L.S.L., Roh, J.S., Suchard, J., Tapia, A., Wiechmann, W., & Langdorf, M.I. (2024). Accuracy of prospective assessments of 4 large language model chatbot responses to patient questions about emergency care: Experimental comparative study. J Med Internet Res,26:e60291. https://doi.org/10.2196/60291
  • Yorgancıoglu Tarcan, G., Yalçın Balçık, P., & Sebik, N. B. (2024). Türkiye ve dünyada sağlık hizmetlerinde yapay zekâ. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 14(1), 50-60. https://doi.org/10.31020/mutftd.1278529
  • Zarouali, B., Poels, K., Walrave, M., & Ponnet, K. (2018). The impact of regulatory focus on adolescents’ evaluation of targeted advertising on social networking sites. International Journal of Advertising, 0(0),1–20.
  • Zumstein, D., & Hundertmark, S. (2017). Chatbots—an ınteractive technology for personalized communication, transactions and services. IADIS International Journal on WWW/Internet, 15, 96-109.

Yapay Zekâ Sohbet Robotunun Yenilik Hizmet Kalitesinin Ölçülmesi: E-Ticaret, Sağlık ve Gastronomi Platformlarının Kıyaslanması

Yıl 2025, Sayı: 58, 119 - 143, 30.12.2025
https://doi.org/10.52642/susbed.1623285

Öz

Sektörlerde müşterilerin Yapay Zekâ Sohbet Robotuyla (YZSR) etkileşimlerine bağlı olarak hizmet kalitesi memnuniyet düzeyleri farklılaşmaktadır. Bu çalışmada e ticaret, sağlık ve gastronomi gibi üç alanda YZSR kullanımının müşteri memnuniyeti açısından karşılaştırılması amaçlanmıştır. Araştırmada karma yöntem kullanılmış olup; önce nicel, sonra nitel yöntem uygulamalarına sıralı olarak yer verilmiştir. Elde edilen veriler arasında ilişki belirlenmiştir. Araştırmanın nicel boyutunda e ticaret, sağlık ve gastronomi gibi üç farklı alanda YZSR kullanan müşteriler arasından kolayda örnekleme yoluyla belirlenen 420 kişi örneklemi; nitel boyutunda üç alanda YZSR kullanan ve en az iki veya daha fazla deneyimi olan 8’er müşteri çalışma grubunu oluşturmuştur. Nicel veriler, 5’i anket sorusu, 34 ‘ü likert tipi hizmet kalitesi ölçeği sorusuyla, nitel veriler ise, üç alandan (e ticaret, sağlık ve gastronomi) 8’er katılımcıya yönlendirilen yarı yapılandırılmış 6 görüşme sorusuna verilen yanıtlardan elde edilmiştir. Verilerin analizinde çoklu karşılaştırma istatistik testleri; nitel verilerin analizi ise içerik analiz yöntemi ile yapılmıştır. Görüşmeden elde edilen veriler, kodlanarak içerik analizi yoluyla temalara ulaşılmıştır. Araştırma sonucunda müşterilerin üç alanda YZSR deneyimleri ile memnuniyetleri ilişkilendirilerek karşılaştırılmıştır. Araştırmada veri akışına bağlı hız, veri çeşitliliği ve verilerin ilişkilendirilmesine bağlı olarak YZSR’ lerden alınan hizmetlerin farklılaştığı sonucuna ulaşılmıştır. YZSR müşteri ilişkilerinin iyileştirilmesi için YZSR’lerin belli standartlara ve alanlara özgü tasarlanmasına yönelik öneriler dile getirilmiştir.

Kaynakça

  • Acayıp, E. (2024). The effect of artificial intelligence supported chatbot service quality on customer satisfaction. Current Perspectives in Social Sciences, 28(4), 477-490. https://doi.org/10.53487/atasobed.1438079
  • Aleem, A. K., & Loureiro, S. M. (2021). Luxury brands on Instagram: A netnographic approach. Fashion, Design & Marketing Management in the Digital Environment (pp. 432-444). Seoul: 2021 GFMC/KSMS International Conference.
  • Alpkoçak, A. (2024). Sağlıkta açıklanabilir yapay zekâ. TOTBİD Dergisi S, 23, 18-19. https://doi.org/10.5578/totbid.dergisi.2024.04
  • Andrikyan, W., Sametinger, S.M., Kosfeld, F., et al, (2025). Artificial intelligence-powered chatbots in search engines: a cross-sectional study on the quality and risks of drug information for patients, BMJ Quality & Safety; 34, 100-109. https://doi.org/10.1136/bmjqs-2024-017476
  • Arora, P., & Narula, S. (2018). Linkages between Service quality, customer satisfaction and customer loyalty: A literature review. The IUP Journal of Marketing Management, 17, 30-54.
  • Brandtzaeg, P.B. & Folstad, A. (2017). Why People Use Chatbots. 2017 International Conference on Internet Science, Thessaloniki, 22-24 November 2017, 377-392. https://doi.org/10.1007/978-3-319-70284-1_30
  • Bull, S., Hood, S., Mumby, S., Hendrickson, A., Silvasstar, J., Salyers, A. (2024). Feasibility of using an artificially intelligent chatbot to increase access to information and sexual and reproductive health services. Dıgıtal Health,10. https://doi.org/10.1177/20552076241308994
  • Calantone, R. J., Di Benedetto, A., & Rubera, G. (2018). Launch activities and timing in new product development. Journal of Global Scholars of Marketing Science, 28(1), 33–41. https://doi.org/10.1080/21639159.2017.1410771
  • Cai, S., & Jun, M. (2003). Internet users' perceptions of online service quality: A comparison of online buyers and information searchers. Managing Service Quality: An International Journal, 13(6), 504-519. https://doi.org/10.1108/09604520310506568
  • Cenfetelli, R., Benbasat, I., & Al-Natour, S. (2008). Çevrimiçi hizmetlerin ne ve nasıl olduğu konusunu ele almak: E-iş başarısı için hizmet içeriği ve hizmet kalitesinin karşılaştırılması. Inform. Syst. Res. ,19, 161–181. https://doi.org/10.1287/isre.1070.0163
  • Cheah, M., Gan, Y., Altice, F., Wickersham, J., Shrestha, R., Salleh, N., Ng, K., Azwa, I., Balakrishnan, V., Kamarulzaman, A., & Ni, Z. (2024). Testing the Feasibility and Acceptability of Using an Artificial Intelligence Chatbot to Promote HIV Testing and Pre-Exposure Prophylaxis in Malaysia: Mixed Methods Study. JMIR Hum Factors, 11, 2055. https://doi.org/10.2196/52055
  • Chen Q., Yeming, G., Yaobin, L., & Jing, T. (2022). Classifying and measuring the service quality of AI chatbot in frontline service. Journal of Business Research, 145(5), 552-568. https://doi.org/10.1016/j.jbusres.2022.02.088
  • Chatelan, A., Clerc, A., & Fonta, P.A. (2023). ChatGPT and future artificial ıntelligence chatbots: What may be the ınfluence on credentialed nutrition and dietetics practitioners? J Acad Nutr Diet. 123(11),1525-1531. https://doi.org/10.1016/j.jand.2023.08.001
  • Çiçekdağı, M. (2024). Yapay zekâ destekli sohbet robotları ile tatil rotası belirleme: Karşılaştırmalı bir analiz. Çatalhöyük Uluslararası Turizm ve Sosyal Araştırmalar Dergisi (CUTSAD), 12, 1-15. https://doi.org/10.58455/cutsad.1470842
  • Correa, T., Hinsley, A. W., & de Zúñiga, H. G. (2010). Who interacts on the web?: The intersection of users’ personality and social media use. Computers in Human Behavior, 26(2), 247–253. https://doi.org/10.1016/j.chb.2009.09.003
  • Coyle, C. E., & Dugan, E. (2012). Social ısolation, loneliness and health among older adults. Journal of Aging and Health, 24(8), 1346-1363. https://doi.org/10.1177/0898264312460275
  • Dabholkar, P.A., Shepherd, C.D. & Thorpe, D.I. (2000). A comprehensive framework for service quality: An investigation of critical conceptual and measurement issues through a longitudinal study. Journal of Retailing, 76(2), 139-73. https://doi.org/10.1016/S0022-4359(00)00029-4
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of ınformation technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
  • De Keyser, A., Köcher, S., Alkire, L., Verbeeck, C., & Kandampully, J. (2019). Frontline service technology infusion: Conceptual archetypes and future research directions. Journal of Service Management, 30(1),156–183. https://doi.org/10.1108/JOSM-03-2018-0082
  • Ercan, F. (2020). Turizm Pazarlamasında Yapay Zekâ Teknolojilerinin Kullanımı ve Uygulama Örnekleri. Ankara Hacı Bayram Veli Üniversitesi Turizm Fakültesi Dergisi, 23(2), 394-410. https://doi.org/10.34189/tfd.23.02.009
  • Forbes. (2017). Ten customer service and customer experience trends for 2017.https://www.forbes.com/sites/shephyken/2017/01/07/10-customer-service-and-customerexperience-cx-trends-for-2017/#145a272c75e5
  • Gray, H.M., Gray, K., & Wegner, D.M. (2007). Zihin algısının boyutları. Bilim, 315, 619. https://doi.org/10.1126/science.1134475
  • Güvenol, B., Kömürcü Sarıbaş, S., & Güler, M. E. (2023). İzmir mutfağının yapay zekâ tabanlı sohbet robotları ile incelenmesi. Journal of Travel and Tourism Research, 23(23), 126-144.
  • Hsu, C. L., & Lin, J. C. C. (2023). Understanding the user satisfaction and loyalty of customer service chatbots. Journal of Retailing and Consumer Services, 71, 103211. https://doi.org/10.1016/j.jretconser.2022.103211
  • Insider-Trends. (2017). Retail trends fact fle 2017: physical retail. Retrieved September 21, 2020, from http://www.insider-trends.com/retail-trends-factfile-2017-physical-retail/
  • Jenkins, MC., Churchill, R., Cox, S., & Smith, D. (2007). Analysis of User Interaction with Service Oriented Chatbot Systems. In: Jacko, J.A. (eds) Human-Computer Interaction. HCI Intelligent Multimodal Interaction Environments. HCI 2007. Lecture Notes in Computer Science, vol 4552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73110-8_9
  • Jiang, J. J., Klein, G., & Carr, C. L. (2002). Measuring information system service quality: SERVQUAL from the other side. MIS Quarterly, 26(2), 145–166. https://doi.org/10.2307/4132324
  • Johnson, G. J., Bruner, G. C. II, & Kumar, A. (2006). Interactivity and Its Facets Revisited: Theory and Empirical Test. Journal of Advertising, 35(4), 35–52. https://doi.org/10.2753/JOA0091-3367350403
  • Jörling, M., Böhm, R., ve Paluch, S. (2019). Service robots: Drivers of perceived responsibility for service outcomes. Journal of Service Research, 22(4),404-420. https://doi.org/10.1177/1094670519842334
  • Karahan, K. (2000). Hizmet pazarlaması. İstanbul: Beta Yayınları Dağıtım A.Ş.
  • Karasar, N. (2019). Bilimsel irade algı çerçevesi ile bilimsel araştırma yöntemi: Kavramlar, ilkeler, teknikler (34. Baskı). Ankara: Nobel Akademik Yayıncılık.
  • Korfiatis, N., Stamolampros, P., Kourouthanassis, P., & Sagiadinos, V. (2019). Measuring service quality from unstructured data: A topic modeling application on airline passengers’ online reviews. Expert Systems with Applications, 116, 472–486. https://doi.org/10.1016/j.eswa.2018.09.037
  • Kulviwat S.L, Bruner G. C., Kumar A., Nasco S. A., Clark T., (2007). Toward a unified theory of consumeracceptance technology. Physicology Marketing, 24(12), 1059-1084. https://doi.org/10.1002/mar.20196
  • Letheren, K. & Glavas, C. (2017) Embracing the bots: how direct to consumer advertising is about to change forever. The Conversation, 2017.
  • Lee, P., Bubeck, S., &Petro, J. (2023). Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N Engl J Med., 388(13), 1233-1239. https://doi.org/10.1056/NEJMsr2214184
  • Lee, H., & Chang, E. (2011). Consumer attitudes toward online mass customization: An application of extended technology acceptance model. Journal of Computer-Mediated Communication, 16(2), 171–200. https://doi.org/10.1111/j.1083-6101.2010.01530.x
  • Lent, H.C., Ortner, V.K., Karmisholt, K.E., Wiegell, S.R., Nissen, C.V., Omland, S.H., Kamstrup, M.R., Togsverd-Bo, K., & Haedersdal, M. (2024). A chat about actinic keratosis: Examining capabilities and user experience of ChatGPT as a digital health technology in dermato-oncolog. Journal of the European Academy of Dermatology and Venereology Clin Pract.,3, 258-265. https://doi.org/10.1002/jvc2.263
  • Li, J. (2023). Security Implications of AI Chatbots in Health Care.J Med Internet Res, 25: e47551 https://doi.org/10.2196/47551
  • Liu, M., Yaxin, Y., Ren, Y., Jia, Y., Ma, H., Luo, J., Fang, S., Qi, M., Zhang, L. (2024). What influences consumer AI chatbot use intention? An application of the extended technology acceptance model. Journal of Hospitality and Tourism Technology ,15 (4), 667–689. https://doi.org/10.1108/JHTT-03-2023-0057
  • Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 11, 1–11.
  • Maher, C., Singh, B., Wylde, A., & Chastin, S. (2024). Virtual health assistants: a grand challenge in health communications and behavior change. Front Digit Health, 6,1418695. https://doi.org/10.3389/fdgth.2024.1418695
  • Maklan, S., Antonetti, P., & Whitty, S. (2017). A better way to manage customer experience: Lessonsfrom the royal bank of Scotland. California Management Review, 59(2), 92–115. https://doi.org/10.1177/0008125617695285
  • Mittal, B. (1999). The advertising of services: Meeting the challenge of ıntangibility. Journal of Service Research, 2(1), 98-116. https://doi.org/10.1177/109467059921008
  • Morgan-Thomas, A. & Veloutsou, C. (2013). Beyond technology acceptance: Brand relationships and online brand experience. Journal of Business Resources, 66, 21-27. https://doi.org/10.1016/j.jbusres.2011.07.019
  • Nysveen, H., Pedersen, P.E. & Thorbjornsen, H. (2005). Explaining Intention to Use Mobile Chat Services: Moderating Effects of Gender. Journal of Consumer Marketing, 22, 247-256. https://doi.org/10.1108/07363760510611671
  • O’Neill, M., Wright, C., & Fitz, F. (2001). Quality evaluation in online service environments: An application of the importance-performance measurement technique. Managing Service Quality, 11(6), 402–417. https://doi.org/10.1108/EUM0000000006519
  • Parasuraman, A., Zeithaml, V.A. & Berry, L.L. (1988). SERVQUAL: A multipleıtem scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40.
  • Parasuraman, A., Zeithaml, V.A. & Malhotra, A. (2005) E-S-Qual: A multiple-ıtem scale for assessing electronic service quality. Journal of Service Research, 7, 213-233. https://doi.org/10.1177/1094670504271156
  • Perrey, J., & Spillecke, D. (2011). Retail Marketing and Branding: A Definitive Guide to Maximizing ROI.John Wiley & Sons.
  • Piercy, N. (2014). Online service quality: Content and process of analysis. Journal of Marketing Management, 30(7–8), 747–785. https://doi.org/10.1080/0267257X.2013.839571
  • Sato, A., Haneda, E., Hiroshima, Y., & Narimatsu, H. (2024). Preliminary screening for hereditary breast and ovarian cancer using an aı chatbot as a genetic counselor: Clinical Study. J Med Internet Res, 26,48914. https://doi.org/10.2196/48914
  • Sencer, M. (1989). Toplum bilimlerinde yöntem. İstanbul: Beta Basım Yayım Dağıtım
  • Şencan, H., & Fidan, Y. (2020). Likert verilerinin kullanıldığı keşfedici faktör analizlerinde normallik varsayımı ve faktör çıkarma üzerindeki etkisinin SPSS, FACTOR ve PRELIS yazılımlarıyla sınanması. BMIJ, 8(1), 640-687. https://doi.org/10.15295/bmij.v8i1.1395
  • Tam, W., Huynh, T., Tang, A., Luong, S., Khatri, Y., & Zhou, W. (2023). Nursing education in the age of artificial intelligence powered Chatbots (AI-Chatbots): Are we ready yet? Nurse Education Today, 129, 105917.https://doi.org/10.1016/j.nedt.2023.105917
  • Temsah, M.-H., Aljamaan, F., Malki, KH, Alhasan, K., Altamimi, I., Aljarbou, R., Bazuhair, F., Alsubaihin, A., Abdulmajeed, N., Alshahrani, FS, Temsah, R., Alshahrani, T., Al-Eyadhy, L., Alkhateeb, SM, Saddik, B., Halwani, R., Jamal, A., Al-Tawfiq, JA ve Al-Eyadhy, A. (2023). ChatGPT ve dijital sağlığın geleceği: Sağlık çalışanlarının algıları ve beklentileri üzerine bir araştırma. Sağlık, 11 (13), 1812. https://doi.org/10.3390/healthcare11131812
  • Thomas, J. J., Becker, K. R., Kuhnle, M. C., Jo, J. H., Harshman, S. G., Wons, O. B., Keshishian, A. C., Hauser, K., Breithaupt, L., Liebman, R. E., Misra, M., Wilhelm, S., Lawson, E. A., & Eddy, K.T. (2020). Cognitive-behavioral therapy for avoidant/restrictivefood intake disorder: Feasibility, acceptability, and proof-ofconcept for children and adolescents. International Journal ofEating Disorders, 53(10). https://doi.org/10.1002/eat.23355
  • Vena-Oya, J., Castaneda-García, J.A., & Burys, J. (2024). Chatbot service quality: An experiment comparing two countries with different levels of digital literacy. Tour. Hosp., 5, 276–289. https://doi.org/10.3390/tourhosp5020018
  • Vern, P., Miftah, N., & Panghal, A. (2022). Digital technology: Implementation challenges and strategies in agri-food supply chain. In Agri-food 4.0, 27, 17–30. https://doi.org/10.1108/S1877-636120220000027002
  • Wang, L. C., Baker, J., Wagner, J. A., & Wakefield, K. (2007). Can a retail web site be social? Journal of Marketing, 71(3), 143-157. https://doi.org/10.1509/jmkg.71.3.143. https://doi.org/10.1509/jmkg.71.3.143
  • Wang, Y. F., & Petrina, S. (2013). Using learning analytics to understand the design of an intelligent language tutor-chatbot lucy. Editorial Preface, 4, 124–131. https://doi.org/10.14569/IJACSA.2013.041117
  • Walther, J. B., Liang, Y. J., Ganster, T., Wohn, D. Y., & Emington, J. (2012). Online reviews, helpfulness ratings, and consumer attitudes: An extension of congruity theory to multiple sources in Web 2.0. Journal of Computer-Mediated Communication, 18(1), 97–112.
  • Wirtz, J., & Zeithaml, V. (2018). Cost-effectiveservice excellence. Journal of the Academy of Marketing Science, 46(1), 59–80. https://doi.org/10.1007/s11747-017-0560-7
  • Yau, J.Y.S., Saadat, S., Hsu, E., Murphy, L.S.L., Roh, J.S., Suchard, J., Tapia, A., Wiechmann, W., & Langdorf, M.I. (2024). Accuracy of prospective assessments of 4 large language model chatbot responses to patient questions about emergency care: Experimental comparative study. J Med Internet Res,26:e60291. https://doi.org/10.2196/60291
  • Yorgancıoglu Tarcan, G., Yalçın Balçık, P., & Sebik, N. B. (2024). Türkiye ve dünyada sağlık hizmetlerinde yapay zekâ. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 14(1), 50-60. https://doi.org/10.31020/mutftd.1278529
  • Zarouali, B., Poels, K., Walrave, M., & Ponnet, K. (2018). The impact of regulatory focus on adolescents’ evaluation of targeted advertising on social networking sites. International Journal of Advertising, 0(0),1–20.
  • Zumstein, D., & Hundertmark, S. (2017). Chatbots—an ınteractive technology for personalized communication, transactions and services. IADIS International Journal on WWW/Internet, 15, 96-109.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İletişim Teknolojisi ve Dijital Medya Çalışmaları, Dijital Pazarlama, İnovasyon Yönetimi, Gastronomi
Bölüm Araştırma Makalesi
Yazarlar

Gizem Şebnem Beydoğan 0000-0001-6940-9486

Gönderilme Tarihi 19 Ocak 2025
Kabul Tarihi 18 Kasım 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 58

Kaynak Göster

APA Beydoğan, G. Ş. (2025). Yapay Zekâ Sohbet Robotunun Yenilik Hizmet Kalitesinin Ölçülmesi: E-Ticaret, Sağlık ve Gastronomi Platformlarının Kıyaslanması. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(58), 119-143. https://doi.org/10.52642/susbed.1623285


24108  28027

Bu eser Creative Commons Attribution-NonCommercial 4.0 International Lisansı ile lisanslanmıştır.