Araştırma Makalesi
BibTex RIS Kaynak Göster

Does Google Trends Search Interest Reflect Electric Vehicle Sales? Evidence from Germany

Yıl 2025, Sayı: 58, 259 - 277, 30.12.2025
https://doi.org/10.52642/susbed.1778632

Öz

This study analyzes the long-term relationship between sales of battery electric vehicles and plug-in hybrid vehicles in Germany from January 2016 to March 2025 and consumer interest measured using Google Trends data. To this end, eight German search terms related to electric vehicles were selected and a single composite search interest index was created using Principal Component Analysis. Subsequently, unit root tests with structural breaks and multiple break cointegration tests were conducted. The findings can be summarized under three headings. First, the evidence reveals that search interest exhibits a significant long-term co-movement with both battery electric vehicle and plug-in hybrid vehicle sales. In particular, structural breaks were identified in the post-2020 period, coinciding with incentive mechanisms, energy crises, and policy changes. Second, the results indicate that the relationship varies in sensitivity across segments. Third, by demonstrating that Google Trends data serves as a leading indicator for tracking consumer interest in the electric vehicle market, the study shows that responses to policy and market shocks are reflected simultaneously in both digital interest and sales. These findings provide actionable insights for early signal generation and demand tracking in marketing strategies and public policies.

Kaynakça

  • Alberini, A., & Vance, C. (2025). Policy forces in the German new car market: How do they affect PHEV and BEV sales?. Transportation Research Part A: Policy and Practice, 196, 104477. https://doi.org/10.1016/j.tra.2025.104477Get rights and content
  • Aljifri, H., & Navarro, D. S. (2004). Search engines and privacy. Computers & Security, 23(5), 379-388. https://doi.org/10.1016/j.cose.2003.11.004
  • Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, (2), 107-120.
  • Azar, J. (2009). Electric cars and oil prices. Social Science Electronic Publishing.
  • Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 47-78. https://doi.org/10.2307/2998540
  • Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454-464. https://doi.org/10.1016/j.tourman.2014.07.014
  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British journal of statistical psychology, 3 (2), 77-85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x
  • Bundesamt für Wirtschaft und Ausfuhrkontrolle. (2016, July 1). Kaufprämie für Elektrofahrzeuge: Antragstellung ab Samstag, 2. Juli 2016 möglich. Retrieved from: https://www.bafa.de/SharedDocs/Pressemitteilungen/DE/Energie/2016_16_emob.html (accessed June 23, 2025).
  • Burra, L. T., Al-Khasawneh, M. B., & Cirillo, C. (2024). Impact of charging infrastructure on electric vehicle adoption: A synthetic population approach. Travel Behaviour and Society, 37, 100834. https://doi.org/10.1016/j.tbs.2024.100834
  • Carrière‐Swallow, Y., & Labbé, F. (2013). Nowcasting with Google Trends in an emerging market. Journal of Forecasting, 32(4), 289-298. https://doi.org/10.1002/for.1252
  • Castellacci, F., & Santoalha, A. (2025). Does digitalisation affect the adoption of electric vehicles? New regional-level evidence from Google Trends data. Regional Studies, 59(1), 2358829. https://doi.org/10.1080/00343404.2024.2358829
  • Cebrián, E., & Domenech, J. (2023). Is Google Trends a quality data source?. Applied Economics Letters, 30(6), 811-815. https://doi.org/10.1080/13504851.2021.2023088
  • Chamberlin, G. (2010). Googling the present. Economic & Labour Market Review, 4(12), 59-95. https://doi.org/10.1057/elmr.2010.166
  • Chandukala, S. R., Dotson, J. P., Liu, Q., & Conrady, S. (2014). Exploring the relationship between online search and offline sales for better “nowcasting”. Customer Needs and Solutions, 1(3), 176-187. https://doi.org/10.1007/s40547-014-0020-1
  • Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
  • Crownhart, C. (2024, September 23). Some countries are ending support for EVs. Is it too soon? MIT Technology Review. Retrieved from: https://www.technologyreview.com/2024/09/23/1104247/ending-ev-subsidies/ (accessed June 26, 2025).
  • Degirmenci, K., & Breitner, M. H. (2017). Consumer purchase intentions for electric vehicles: Is green more important than price and range?. Transportation Research Part D: Transport and Environment, 51, 250-260. https://doi.org/10.1016/j.trd.2017.01.001
  • Ditzen, J., Karavias, Y., & Westerlund, J. (2025). Testing and estimating structural breaks in time series and panel data in Stata. The Stata Journal, 25(3), 526-560. https://doi.org/10.1177/1536867X2513654
  • Du, R. Y., & Hsieh, T. Y. (2023). Leveraging online search data as a source of marketing insights. Foundations and Trends® in Marketing, 17(4), 227-291. http://dx.doi.org/10.1561/1700000070
  • Du, R. Y., Hu, Y., & Damangir, S. (2015). Leveraging trends in online searches for product features in market response modeling. Journal of Marketing, 79(1), 29-43. https://doi.org/10.1509/jm.12.0459
  • Deutsche Welle, (2018, May 31). Hamburg partial diesel ban goes into effect. Retrived from: https://www.dw.com/en/hamburg-partial-diesel-transport-ban-goes-into-effect/a-44014953 (accessed June 29, 2025).
  • Egbue, O., & Long, S. (2012). Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy policy, 48, 717-729. https://doi.org/10.1016/j.enpol.2012.06.009
  • Elektromobilitätsgesetz (EmoG), (2015). Gesetz zur Bevorrechtigung der Verwendung elektrisch betriebener Fahrzeuge, (Elektromobilitätsgesetz- EmoG). Retrieved from: https://www.gesetze-im-internet.de/emog/BJNR089800015.html
  • European Parliament, (2022, November 3). EU ban on the sale of new petrol and diesel cars from 2035 explained. Retrieved from: https://www.europarl.europa.eu/topics/en/article/20221019STO44572/eu-ban-on-sale-of-new-petrol-and-diesel-cars-from-2035-explained (accessed June 26, 2025).
  • Fantazzini, D., & Toktamysova, Z. (2015). Forecasting German car sales using Google data and multivariate models. International Journal of Production Economics, 170, 97-135. https://doi.org/10.1016/j.ijpe.2015.09.010
  • Federal Ministry For Economic Affairs And Energy, (2016). Regulatory environment and incentives for using electric vehicles and developing a charging infrastructure. Retrieved from: https://www.bundeswirtschaftsministerium.de/Redaktion/EN/Artikel/Industry/regulatory-environment-and-incentives-for-using-electric-vehicles.html (accessed June 29, 2025).
  • Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. https://doi.org/10.1038/nature07634
  • Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting consumer behavior with Web search. Proceedings of the National academy of sciences, 107(41), 17486-17490. https://doi.org/10.1073/pnas.1005962107
  • Google News Initiative. (2025). Basics of Google Trends. Retrieved from: https://newsinitiative.withgoogle.com/tr-tr/resources/trainings/basics-of-google-trends/ (accessed June 21, 2025).
  • Haan, P., Santonja, A., & Zaklan, A. (2025). Effectiveness and heterogeneous effects of purchase grants for electric vehicles. Environmental and Resource Economics, 88(1), 185-223. https://doi.org/10.1007/s10640-024-00929-z
  • Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2018). Multivariate Data Analysis. (8th Ed). United Kingdom: Cengage Learning.
  • IEA (International Energy Agency). (2017). Umweltbonus – Environmental Bonus. OECD Publishing. Retrieved from: https://www.iea.org/policies/3294-umweltbonus-environmental-bonus (accessed June 19, 2025).
  • IEA (International Energy Agency). (2018). Global EV Outlook 2018 Towards cross-modal electrification. OECD Publishing. Retrieved from: https://www.oecd.org/en/publications/global-ev-outlook-2018_9789264302365-en.html (accessed June 19, 2025).
  • IEA (International Energy Agency). (2020). Global EV Outlook 2020, Entering the decade of electric drive? International Energy Agency. Retrieved from: https://www.iea.org/reports/global-ev-outlook-2020 (accessed June 26, 2025).
  • IEA (International Energy Agency). (2021). How global electric car sales defied Covid-19 in 2020, IEA, Paris. Retrieved from: https://www.iea.org/commentaries/how-global-electric-car-sales-defied-covid-19-in-2020 (accessed June 25, 2025).
  • IEA (International Energy Agency). (2025). Global EV Outlook 2025. Expanding Sales in Diverse Markets. Paris: IEA. Retrieved from: https://www.iea.org/reports/global-ev-outlook-2025 (accessed June 19, 2025).
  • Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). New York: Springer-Verlag.
  • Jun, S. P., & Park, D. H. (2016). Consumer information search behavior and purchasing decisions: Empirical evidence from Korea. Technological Forecasting and Social Change, 107, 97-111. https://doi.org/10.1016/j.techfore.2016.03.021
  • Jun, S. P., Park, D. H., & Yeom, J. (2014). The possibility of using search traffic information to explore consumer product attitudes and forecast consumer preference. Technological Forecasting and Social Change, 86, 237-253. https://doi.org/10.1016/j.techfore.2013.10.021
  • Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measurement, 34(1), 111-117. https://doi.org/10.1177/001316447403400115
  • Kinski, A. (2016). Google trends as complementary tool for new car sales forecasting: A cross-country comparison along the customer journey, Master’s thesis, University of Twente.
  • Kraftfahrt-Bundesamt (KBA). Neuzulassungen Alternative Antriebe. Retrieved from: https://www.kba.de/DE/Statistik/Produktkatalog/produkte/Fahrzeuge/fz28/fz28_gentab.html (accessed May 14, 2025).
  • Krajčovič, P. (2023, May). Manifestations of the Groundswell in the Online Environment and its Impact on the Electric Cars Sales. In ECSM 2023 10th European Conference on Social Media. Academic Conferences and publishing limited.
  • Kulkarni, G., Kannan, P. K., & Moe, W. (2012). Using online search data to forecast new product sales. Decision support systems, 52(3), 604-611. https://doi.org/10.1016/j.dss.2011.10.017
  • Li, Y., Yu, L., & Wen, R. (2019, October). Predicting sales by online searching data keywords based on text mining: Evidence from the Chinese automobile market. In Journal of Physics: Conference Series (Vol. 1325, No. 1, p. 012071). IOP Publishing. https://doi.org/10.1088/1742-6596/1325/1/012071
  • Liu, J., Chen, L., Luo, R., & Zhu, J. (2023). A combination model based on multi-angle feature extraction and sentiment analysis: Application to EVs sales forecasting. Expert Systems with Applications, 224, 119986. https://doi.org/10.1016/j.eswa.2023.119986
  • Loehr, J. M., & Hanken, M. (2025). From Jump-Start to Phase-Out—Transitioning Policy Making Towards a Primarily Market Driven Charging Infrastructure Rollout in Germany. World Electric Vehicle Journal, 16(6), 300. https://doi.org/10.3390/wevj16060300
  • Maki, D. (2012). Tests for cointegration allowing for an unknown number of breaks. Economic Modelling, 29(5), 2011-2015. https://doi.org/10.1016/j.econmod.2012.04.022
  • Meza, E. (2022, April, 14). Germany ending subsidies for plug-in hybrids earlier than planned. Clean Energy Wire. Retrieved from: https://www.cleanenergywire.org/news/germany-ending-subsidies-plug-hybrids-earlier-planned (accessed June 25, 2025).
  • McElgunn, J. (2018). Consumer Awareness of Electric Vehicles and Global Purchasing Patterns. Economics Student Theses and Capstone Projects. 81. https://creativematter.skidmore.edu/econ_studt_schol/81
  • Nationale Plattform Zukunft der Mobilität (2018). The NPM. Retrieved from: https://www.plattform-zukunft-mobilitaet.de/en/the-npm/ (accessed June 19, 2025).
  • Niri, A. J., Poelzer, G. A., Zhang, S. E., Rosenkranz, J., Pettersson, M., & Ghorbani, Y. (2024). Sustainability challenges throughout the electric vehicle battery value chain. Renewable and Sustainable Energy Reviews, 191, 114176. https://doi.org/10.1016/j.rser.2023.114176
  • Pamidimukkala, A., Kermanshachi, S., Rosenberger, J. M., & Hladik, G. (2024). Barriers and motivators to the adoption of electric vehicles: A global review. Green Energy and Intelligent Transportation, 3(2), 100153. https://doi.org/10.1016/j.geits.2024.100153
  • Peters, A., & Dütschke, E. (2014). How do consumers perceive electric vehicles? A comparison of German consumer groups. Journal of Environmental Policy & Planning, 16(3), 359-377. https://doi.org/10.1080/1523908X.2013.879037
  • Plötz, P., Schneider, U., Globisch, J., & Dütschke, E. (2014). Who will buy electric vehicles? Identifying early adopters in Germany. Transportation Research Part A: Policy and Practice, 67, 96-109. https://doi.org/10.1016/j.tra.2014.06.006
  • Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific reports, 3(1), 1-6. https://doi.org/10.1038/srep01684
  • Samaras, L., García-Barriocanal, E., & Sicilia, M. A. (2012). Syndromic surveillance models using Web data: The case of scarlet fever in the UK. Informatics for Health and Social Care, 37(2), 106-124. https://doi.org/10.3109/17538157.2011.647934
  • Sayedi, M. (2020). Google Trends as a complementary tool for new car sales forecasting: a cross-country comparison along the customer journey, a case for India and South Korea: Master of Business Studies in Marketing at Massey University, Albany, New Zealand (Doctoral dissertation, Massey University).
  • Schulze Darup, A., Piulachs, X., & Guille, M. (2018). Consumer preferences for electric vehicles in Germany. International journal of transport economics: Rivista internazionale di economia dei trasporti: XLV, 1, 2018, 97-122.
  • Statcounter. (2025). Search Engine Market Share Germany. Retrieved from: https://gs.statcounter.com/search-engine-market-share/all/germany (accessed June 20, 2025).
  • Shim, S., Eastlick, M. A., Lotz, S. L., & Warrington, P. (2001). An online prepurchase intentions model: the role of intention to search: best overall paper award—The Sixth Triennial AMS/ACRA Retailing Conference, 2000☆. Journal of retailing, 77(3), 397-416. https://doi.org/10.1016/S0022-4359(01)00051-3
  • Southern, M. G. (2025, April, 4). Google market share slips, AI referrals & regional search engines rise. Search Engine Journal. Retrieved from: https://www.searchenginejournal.com/google-market-share-slips-ai-referrals-regional-search-engines-rise/539373/
  • Sustainable Governance Indicators. (2024). Germany: Environmental Sustainability. Retrieved from: https://www.sgi-network.org/2024/Germany/Environmental_Sustainability (accessed July 13, 2025).
  • Trommer, S., Jarass, J., & Kolarova, V. (2015). Early adopters of electric vehicles in Germany unveiled. World Electric Vehicle Journal, 7(4), 722-732. https://doi.org/10.3390/wevj7040722
  • United Nations Economic Commission for Europe (UNECE). (2014, March, 11). UNECE adopts more accurate fuel efficiency and CO2 test for new cars (WLTP). Retrieved from: https://unece.org/press/unece-adopts-more-accurate-fuel-efficiency-and-co2-test-new-cars-wltp (accessed June 23, 2025).
  • Veza, I., Asy’ari, M. Z., Idris, M., Epin, V., Fattah, I. R., & Spraggon, M. (2023). Electric vehicle (EV) and driving towards sustainability: Comparison between EV, HEV, PHEV, and ICE vehicles to achieve net zero emissions by 2050 from EV. Alexandria Engineering Journal, 82, 459-467. https://doi.org/10.1016/j.aej.2023.10.020
  • Von Graevenitz, G., Helmers, C., Millot, V., & Turnbull, O. (2016). Does online search predict sales? Evidence from big data for car markets in Germany and the UK. CGR Working Paper series. Retrieved from: http://dx.doi.org/10.2139/ssrn.2832004
  • Voortman, M. C. (2015). Validity and reliability of web search based predictions for car sales (Master's thesis, University of Twente).
  • Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: survey‐based indicators vs. Google trends. Journal of forecasting, 30(6), 565-578. https://doi.org/10.1002/for.1213
  • Vyas, S., & Kumaranayake, L. (2006). Constructing socio-economic status indices: how to use principal components analysis. Health policy and planning, 21(6), 459-468. https://doi.org/10.1093/heapol/czl029
  • Wachter, P., Widmer, T., & Klein, A. (2019, September). Predicting automotive sales using pre-purchase online search data. In 2019 Federated Conference on Computer Science and Information Systems (FedCSIS) (pp. 569-577). IEEE. https://doi.org/10.15439/2019F239
  • Wu, D., Xu, Z., & Bach, S. (2023). Using Google Trends to predict and forecast avocado sales. Journal of Marketing Analytics, 11(4), 629-641. https://doi.org/10.1057/s41270-023-00232-8
  • Yang, Y., Fan, Y., Jiang, L., & Liu, X. (2022). Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?. Annals of Tourism Research, 93, 103365. https://doi.org/10.1016/j.annals.2022.103365
  • Yu, L., Zhao, Y., Tang, L., & Yang, Z. (2019). Online big data-driven oil consumption forecasting with Google trends. International Journal of Forecasting, 35(1), 213-223. https://doi.org/10.1016/j.ijforecast.2017.11.005
  • Zhang, C., Tian, Y. X., & Fan, Z. P. (2022). Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN. International Journal of Forecasting, 38(3), 1005-1024. https://doi.org/10.1016/j.ijforecast.2021.07.010
  • Zhang, Y., Zhong, M., Geng, N., & Jiang, Y. (2017). Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China. PloS one, 12(5), e0176729. https://doi.org/10.1371/journal.pone.0176729

Google Trends Arama İlgisi Elektrikli Araç Satışlarını Yansıtıyor mu? Almanya’dan Kanıtlar

Yıl 2025, Sayı: 58, 259 - 277, 30.12.2025
https://doi.org/10.52642/susbed.1778632

Öz

Bu çalışma, Almanya’da Ocak 2016–Mart 2025 döneminde bataryalı elektrikli araç ve şarj edilebilir hibrit araç satışları ile Google Trends verilerinden ölçülen tüketici ilgisi arasındaki uzun dönemli ilişkiyi analiz etmektedir. Bu doğrultuda, sekiz elektrikli araç odaklı Almanca anahtar kelime seçilmiş ve Temel Bileşenler Analizi ile tek bir bileşik arama ilgisi indeksi oluşturulmuştur. Ardından, yapısal kırılmalı birim kök ve çoklu kırılmalı eşbütünleşme testleri uygulanmıştır. Bulgular üç ana noktada sıralanabilir. Birincisi, elde edilen sonuçlar, arama ilgisinin hem bataryalı elektrikli araç hem de şarj edilebilir hibrit araç satışlarıyla uzun dönemli anlamlı bir eş hareketlilik sergilediğini ortaya koymaktadır. Özellikle 2020 sonrası dönemde, teşvik mekanizmaları, enerji krizleri ve politika değişiklikleri ile örtüşen yapısal kırılmalar tespit edilmiştir. İkincisi, ilişkinin segmentler arasında duyarlılık bakımından farklılaştığına dair kanıtlar elde edilmiştir. Üçüncüsü, Google Trends verisinin elektrikli araç pazarında tüketici ilgisini izlemek için stratejik bir öncü gösterge olduğu ortaya koyularak, politika ile piyasa şoklarına verilen tepkilerin hem dijital ilgiye hem de satışlara eş zamanlı olarak yansıdığı gösterilmektedir. Bu bulgular, pazarlama stratejileri ve kamu politikaları için erken sinyal üretimi ve talep izlemede uygulanabilir içgörüler sağlamaktadır.

Kaynakça

  • Alberini, A., & Vance, C. (2025). Policy forces in the German new car market: How do they affect PHEV and BEV sales?. Transportation Research Part A: Policy and Practice, 196, 104477. https://doi.org/10.1016/j.tra.2025.104477Get rights and content
  • Aljifri, H., & Navarro, D. S. (2004). Search engines and privacy. Computers & Security, 23(5), 379-388. https://doi.org/10.1016/j.cose.2003.11.004
  • Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, (2), 107-120.
  • Azar, J. (2009). Electric cars and oil prices. Social Science Electronic Publishing.
  • Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 47-78. https://doi.org/10.2307/2998540
  • Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454-464. https://doi.org/10.1016/j.tourman.2014.07.014
  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British journal of statistical psychology, 3 (2), 77-85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x
  • Bundesamt für Wirtschaft und Ausfuhrkontrolle. (2016, July 1). Kaufprämie für Elektrofahrzeuge: Antragstellung ab Samstag, 2. Juli 2016 möglich. Retrieved from: https://www.bafa.de/SharedDocs/Pressemitteilungen/DE/Energie/2016_16_emob.html (accessed June 23, 2025).
  • Burra, L. T., Al-Khasawneh, M. B., & Cirillo, C. (2024). Impact of charging infrastructure on electric vehicle adoption: A synthetic population approach. Travel Behaviour and Society, 37, 100834. https://doi.org/10.1016/j.tbs.2024.100834
  • Carrière‐Swallow, Y., & Labbé, F. (2013). Nowcasting with Google Trends in an emerging market. Journal of Forecasting, 32(4), 289-298. https://doi.org/10.1002/for.1252
  • Castellacci, F., & Santoalha, A. (2025). Does digitalisation affect the adoption of electric vehicles? New regional-level evidence from Google Trends data. Regional Studies, 59(1), 2358829. https://doi.org/10.1080/00343404.2024.2358829
  • Cebrián, E., & Domenech, J. (2023). Is Google Trends a quality data source?. Applied Economics Letters, 30(6), 811-815. https://doi.org/10.1080/13504851.2021.2023088
  • Chamberlin, G. (2010). Googling the present. Economic & Labour Market Review, 4(12), 59-95. https://doi.org/10.1057/elmr.2010.166
  • Chandukala, S. R., Dotson, J. P., Liu, Q., & Conrady, S. (2014). Exploring the relationship between online search and offline sales for better “nowcasting”. Customer Needs and Solutions, 1(3), 176-187. https://doi.org/10.1007/s40547-014-0020-1
  • Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
  • Crownhart, C. (2024, September 23). Some countries are ending support for EVs. Is it too soon? MIT Technology Review. Retrieved from: https://www.technologyreview.com/2024/09/23/1104247/ending-ev-subsidies/ (accessed June 26, 2025).
  • Degirmenci, K., & Breitner, M. H. (2017). Consumer purchase intentions for electric vehicles: Is green more important than price and range?. Transportation Research Part D: Transport and Environment, 51, 250-260. https://doi.org/10.1016/j.trd.2017.01.001
  • Ditzen, J., Karavias, Y., & Westerlund, J. (2025). Testing and estimating structural breaks in time series and panel data in Stata. The Stata Journal, 25(3), 526-560. https://doi.org/10.1177/1536867X2513654
  • Du, R. Y., & Hsieh, T. Y. (2023). Leveraging online search data as a source of marketing insights. Foundations and Trends® in Marketing, 17(4), 227-291. http://dx.doi.org/10.1561/1700000070
  • Du, R. Y., Hu, Y., & Damangir, S. (2015). Leveraging trends in online searches for product features in market response modeling. Journal of Marketing, 79(1), 29-43. https://doi.org/10.1509/jm.12.0459
  • Deutsche Welle, (2018, May 31). Hamburg partial diesel ban goes into effect. Retrived from: https://www.dw.com/en/hamburg-partial-diesel-transport-ban-goes-into-effect/a-44014953 (accessed June 29, 2025).
  • Egbue, O., & Long, S. (2012). Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy policy, 48, 717-729. https://doi.org/10.1016/j.enpol.2012.06.009
  • Elektromobilitätsgesetz (EmoG), (2015). Gesetz zur Bevorrechtigung der Verwendung elektrisch betriebener Fahrzeuge, (Elektromobilitätsgesetz- EmoG). Retrieved from: https://www.gesetze-im-internet.de/emog/BJNR089800015.html
  • European Parliament, (2022, November 3). EU ban on the sale of new petrol and diesel cars from 2035 explained. Retrieved from: https://www.europarl.europa.eu/topics/en/article/20221019STO44572/eu-ban-on-sale-of-new-petrol-and-diesel-cars-from-2035-explained (accessed June 26, 2025).
  • Fantazzini, D., & Toktamysova, Z. (2015). Forecasting German car sales using Google data and multivariate models. International Journal of Production Economics, 170, 97-135. https://doi.org/10.1016/j.ijpe.2015.09.010
  • Federal Ministry For Economic Affairs And Energy, (2016). Regulatory environment and incentives for using electric vehicles and developing a charging infrastructure. Retrieved from: https://www.bundeswirtschaftsministerium.de/Redaktion/EN/Artikel/Industry/regulatory-environment-and-incentives-for-using-electric-vehicles.html (accessed June 29, 2025).
  • Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. https://doi.org/10.1038/nature07634
  • Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting consumer behavior with Web search. Proceedings of the National academy of sciences, 107(41), 17486-17490. https://doi.org/10.1073/pnas.1005962107
  • Google News Initiative. (2025). Basics of Google Trends. Retrieved from: https://newsinitiative.withgoogle.com/tr-tr/resources/trainings/basics-of-google-trends/ (accessed June 21, 2025).
  • Haan, P., Santonja, A., & Zaklan, A. (2025). Effectiveness and heterogeneous effects of purchase grants for electric vehicles. Environmental and Resource Economics, 88(1), 185-223. https://doi.org/10.1007/s10640-024-00929-z
  • Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2018). Multivariate Data Analysis. (8th Ed). United Kingdom: Cengage Learning.
  • IEA (International Energy Agency). (2017). Umweltbonus – Environmental Bonus. OECD Publishing. Retrieved from: https://www.iea.org/policies/3294-umweltbonus-environmental-bonus (accessed June 19, 2025).
  • IEA (International Energy Agency). (2018). Global EV Outlook 2018 Towards cross-modal electrification. OECD Publishing. Retrieved from: https://www.oecd.org/en/publications/global-ev-outlook-2018_9789264302365-en.html (accessed June 19, 2025).
  • IEA (International Energy Agency). (2020). Global EV Outlook 2020, Entering the decade of electric drive? International Energy Agency. Retrieved from: https://www.iea.org/reports/global-ev-outlook-2020 (accessed June 26, 2025).
  • IEA (International Energy Agency). (2021). How global electric car sales defied Covid-19 in 2020, IEA, Paris. Retrieved from: https://www.iea.org/commentaries/how-global-electric-car-sales-defied-covid-19-in-2020 (accessed June 25, 2025).
  • IEA (International Energy Agency). (2025). Global EV Outlook 2025. Expanding Sales in Diverse Markets. Paris: IEA. Retrieved from: https://www.iea.org/reports/global-ev-outlook-2025 (accessed June 19, 2025).
  • Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). New York: Springer-Verlag.
  • Jun, S. P., & Park, D. H. (2016). Consumer information search behavior and purchasing decisions: Empirical evidence from Korea. Technological Forecasting and Social Change, 107, 97-111. https://doi.org/10.1016/j.techfore.2016.03.021
  • Jun, S. P., Park, D. H., & Yeom, J. (2014). The possibility of using search traffic information to explore consumer product attitudes and forecast consumer preference. Technological Forecasting and Social Change, 86, 237-253. https://doi.org/10.1016/j.techfore.2013.10.021
  • Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measurement, 34(1), 111-117. https://doi.org/10.1177/001316447403400115
  • Kinski, A. (2016). Google trends as complementary tool for new car sales forecasting: A cross-country comparison along the customer journey, Master’s thesis, University of Twente.
  • Kraftfahrt-Bundesamt (KBA). Neuzulassungen Alternative Antriebe. Retrieved from: https://www.kba.de/DE/Statistik/Produktkatalog/produkte/Fahrzeuge/fz28/fz28_gentab.html (accessed May 14, 2025).
  • Krajčovič, P. (2023, May). Manifestations of the Groundswell in the Online Environment and its Impact on the Electric Cars Sales. In ECSM 2023 10th European Conference on Social Media. Academic Conferences and publishing limited.
  • Kulkarni, G., Kannan, P. K., & Moe, W. (2012). Using online search data to forecast new product sales. Decision support systems, 52(3), 604-611. https://doi.org/10.1016/j.dss.2011.10.017
  • Li, Y., Yu, L., & Wen, R. (2019, October). Predicting sales by online searching data keywords based on text mining: Evidence from the Chinese automobile market. In Journal of Physics: Conference Series (Vol. 1325, No. 1, p. 012071). IOP Publishing. https://doi.org/10.1088/1742-6596/1325/1/012071
  • Liu, J., Chen, L., Luo, R., & Zhu, J. (2023). A combination model based on multi-angle feature extraction and sentiment analysis: Application to EVs sales forecasting. Expert Systems with Applications, 224, 119986. https://doi.org/10.1016/j.eswa.2023.119986
  • Loehr, J. M., & Hanken, M. (2025). From Jump-Start to Phase-Out—Transitioning Policy Making Towards a Primarily Market Driven Charging Infrastructure Rollout in Germany. World Electric Vehicle Journal, 16(6), 300. https://doi.org/10.3390/wevj16060300
  • Maki, D. (2012). Tests for cointegration allowing for an unknown number of breaks. Economic Modelling, 29(5), 2011-2015. https://doi.org/10.1016/j.econmod.2012.04.022
  • Meza, E. (2022, April, 14). Germany ending subsidies for plug-in hybrids earlier than planned. Clean Energy Wire. Retrieved from: https://www.cleanenergywire.org/news/germany-ending-subsidies-plug-hybrids-earlier-planned (accessed June 25, 2025).
  • McElgunn, J. (2018). Consumer Awareness of Electric Vehicles and Global Purchasing Patterns. Economics Student Theses and Capstone Projects. 81. https://creativematter.skidmore.edu/econ_studt_schol/81
  • Nationale Plattform Zukunft der Mobilität (2018). The NPM. Retrieved from: https://www.plattform-zukunft-mobilitaet.de/en/the-npm/ (accessed June 19, 2025).
  • Niri, A. J., Poelzer, G. A., Zhang, S. E., Rosenkranz, J., Pettersson, M., & Ghorbani, Y. (2024). Sustainability challenges throughout the electric vehicle battery value chain. Renewable and Sustainable Energy Reviews, 191, 114176. https://doi.org/10.1016/j.rser.2023.114176
  • Pamidimukkala, A., Kermanshachi, S., Rosenberger, J. M., & Hladik, G. (2024). Barriers and motivators to the adoption of electric vehicles: A global review. Green Energy and Intelligent Transportation, 3(2), 100153. https://doi.org/10.1016/j.geits.2024.100153
  • Peters, A., & Dütschke, E. (2014). How do consumers perceive electric vehicles? A comparison of German consumer groups. Journal of Environmental Policy & Planning, 16(3), 359-377. https://doi.org/10.1080/1523908X.2013.879037
  • Plötz, P., Schneider, U., Globisch, J., & Dütschke, E. (2014). Who will buy electric vehicles? Identifying early adopters in Germany. Transportation Research Part A: Policy and Practice, 67, 96-109. https://doi.org/10.1016/j.tra.2014.06.006
  • Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific reports, 3(1), 1-6. https://doi.org/10.1038/srep01684
  • Samaras, L., García-Barriocanal, E., & Sicilia, M. A. (2012). Syndromic surveillance models using Web data: The case of scarlet fever in the UK. Informatics for Health and Social Care, 37(2), 106-124. https://doi.org/10.3109/17538157.2011.647934
  • Sayedi, M. (2020). Google Trends as a complementary tool for new car sales forecasting: a cross-country comparison along the customer journey, a case for India and South Korea: Master of Business Studies in Marketing at Massey University, Albany, New Zealand (Doctoral dissertation, Massey University).
  • Schulze Darup, A., Piulachs, X., & Guille, M. (2018). Consumer preferences for electric vehicles in Germany. International journal of transport economics: Rivista internazionale di economia dei trasporti: XLV, 1, 2018, 97-122.
  • Statcounter. (2025). Search Engine Market Share Germany. Retrieved from: https://gs.statcounter.com/search-engine-market-share/all/germany (accessed June 20, 2025).
  • Shim, S., Eastlick, M. A., Lotz, S. L., & Warrington, P. (2001). An online prepurchase intentions model: the role of intention to search: best overall paper award—The Sixth Triennial AMS/ACRA Retailing Conference, 2000☆. Journal of retailing, 77(3), 397-416. https://doi.org/10.1016/S0022-4359(01)00051-3
  • Southern, M. G. (2025, April, 4). Google market share slips, AI referrals & regional search engines rise. Search Engine Journal. Retrieved from: https://www.searchenginejournal.com/google-market-share-slips-ai-referrals-regional-search-engines-rise/539373/
  • Sustainable Governance Indicators. (2024). Germany: Environmental Sustainability. Retrieved from: https://www.sgi-network.org/2024/Germany/Environmental_Sustainability (accessed July 13, 2025).
  • Trommer, S., Jarass, J., & Kolarova, V. (2015). Early adopters of electric vehicles in Germany unveiled. World Electric Vehicle Journal, 7(4), 722-732. https://doi.org/10.3390/wevj7040722
  • United Nations Economic Commission for Europe (UNECE). (2014, March, 11). UNECE adopts more accurate fuel efficiency and CO2 test for new cars (WLTP). Retrieved from: https://unece.org/press/unece-adopts-more-accurate-fuel-efficiency-and-co2-test-new-cars-wltp (accessed June 23, 2025).
  • Veza, I., Asy’ari, M. Z., Idris, M., Epin, V., Fattah, I. R., & Spraggon, M. (2023). Electric vehicle (EV) and driving towards sustainability: Comparison between EV, HEV, PHEV, and ICE vehicles to achieve net zero emissions by 2050 from EV. Alexandria Engineering Journal, 82, 459-467. https://doi.org/10.1016/j.aej.2023.10.020
  • Von Graevenitz, G., Helmers, C., Millot, V., & Turnbull, O. (2016). Does online search predict sales? Evidence from big data for car markets in Germany and the UK. CGR Working Paper series. Retrieved from: http://dx.doi.org/10.2139/ssrn.2832004
  • Voortman, M. C. (2015). Validity and reliability of web search based predictions for car sales (Master's thesis, University of Twente).
  • Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: survey‐based indicators vs. Google trends. Journal of forecasting, 30(6), 565-578. https://doi.org/10.1002/for.1213
  • Vyas, S., & Kumaranayake, L. (2006). Constructing socio-economic status indices: how to use principal components analysis. Health policy and planning, 21(6), 459-468. https://doi.org/10.1093/heapol/czl029
  • Wachter, P., Widmer, T., & Klein, A. (2019, September). Predicting automotive sales using pre-purchase online search data. In 2019 Federated Conference on Computer Science and Information Systems (FedCSIS) (pp. 569-577). IEEE. https://doi.org/10.15439/2019F239
  • Wu, D., Xu, Z., & Bach, S. (2023). Using Google Trends to predict and forecast avocado sales. Journal of Marketing Analytics, 11(4), 629-641. https://doi.org/10.1057/s41270-023-00232-8
  • Yang, Y., Fan, Y., Jiang, L., & Liu, X. (2022). Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?. Annals of Tourism Research, 93, 103365. https://doi.org/10.1016/j.annals.2022.103365
  • Yu, L., Zhao, Y., Tang, L., & Yang, Z. (2019). Online big data-driven oil consumption forecasting with Google trends. International Journal of Forecasting, 35(1), 213-223. https://doi.org/10.1016/j.ijforecast.2017.11.005
  • Zhang, C., Tian, Y. X., & Fan, Z. P. (2022). Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN. International Journal of Forecasting, 38(3), 1005-1024. https://doi.org/10.1016/j.ijforecast.2021.07.010
  • Zhang, Y., Zhong, M., Geng, N., & Jiang, Y. (2017). Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China. PloS one, 12(5), e0176729. https://doi.org/10.1371/journal.pone.0176729
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dijital Pazarlama
Bölüm Araştırma Makalesi
Yazarlar

Nazlı Gamze Özel 0000-0001-6252-2857

Gönderilme Tarihi 5 Eylül 2025
Kabul Tarihi 3 Kasım 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 58

Kaynak Göster

APA Özel, N. G. (2025). Does Google Trends Search Interest Reflect Electric Vehicle Sales? Evidence from Germany. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(58), 259-277. https://doi.org/10.52642/susbed.1778632


24108  28027

Bu eser Creative Commons Attribution-NonCommercial 4.0 International Lisansı ile lisanslanmıştır.