Araştırma Makalesi
BibTex RIS Kaynak Göster

Finansal Gelişimin Tarımsal Verimlilik Üzerindeki Uzun Vadeli Etkisi: Türkiye Örneği

Yıl 2025, Sayı: 58, 295 - 308, 30.12.2025
https://doi.org/10.52642/susbed.1779239

Öz

Bu çalışmanın amacı, Türkiye’de finansal gelişme ile tarımsal verimlilik arasındaki uzun dönemli etkileşimi, tarımsal verimliliğin iki farklı ölçütünü kullanarak incelemektir. İyi işleyen ve gelişmiş bir finansal piyasa, çiftçilerin fonlara daha düşük maliyetlerle erişimini mümkün kılar ve bu da tarımsal verimliliği artırır. Bu kapsamda çalışmada ilgili değişkenlere ilişkin yapılan analizler, 1980-2021 yılları arasındaki Türkiye’ye ait yıllık zaman serisi verilerine dayanmaktadır. İlk olarak, her bir değişkenin durağanlık durumu Kwiatkowski-Phillips-Schmidt-Shin (KPSS) testi kullanılarak kontrol edilmiştir. İkinci olarak, değişkenlerin uzun dönemde birlikte hareket edip etmediğini görmek amacıyla ARDL sınır testi ile eşbütünleşme analizi yapılmıştır. Son olarak, kısa dönem ve uzun dönem katsayıları ARDL tahmin tekniğiyle hesaplanmıştır. Finansal gelişme değişkeni için pozitif ve istatistiksel olarak anlamlı uzun dönem katsayısı elde edilmiştir. Tahmin sonuçlarına göre, finansal gelişme endeksi %1 arttığında, işçi başına tarımsal verimlilik %1,75, kişi başına tarımsal verimlilik ise %0,87 artmaktadır. Ayrıca, kontrol değişkenleri olan gübre tüketimi ve kayıtlı traktör sayısı için de pozitif ve istatistiksel olarak anlamlı uzun dönem katsayıları bulunmuştur. Finansal gelişme ile tarımsal verimlilik arasındaki pozitif ilişkinin tespit edilmesi, bir ekonomide tarımsal verimliliğin artırılması için gelişmiş bir finansal piyasanın önemini ortaya koymaktadır. Dolayısıyla, tarımsal verimliliği artırmayı hedefleyen politika yapıcılar, diğer politikaların yanı sıra finansal piyasaların gelişimini destekleyen politikalara da öncelik vermelidir.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Konya Selçuk Üniversitesi Sosyal bilimler Enstitüsü Dergisinin şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.

Kaynakça

  • Allen, F., Qian, J. Q., & Gu, X. (2017). An overview of China's financial system. Annual Review of Financial Economics, 9(1), 191-231.
  • Aydınbaş, G. (2023). A study on smart agriculture (agriculture 4.0) from an economic perspective. BİLTÜRK Ekonomi ve İlişkili Çalışmalar Dergisi, 5(2), 63-86.
  • Beck, T. (2002). Financial development and international trade: Is there a link? Journal of International Economics, 57(1), 107-131.
  • Bernanke, B., & Gertler, M. (1990). Financial fragility and economic performance. The Quarterly Journal of Economics, 105(1), 87-114.
  • Björkegren, D., & Grissen, D. (2018). The potential of digital credit to bank the poor. Paper presented at the AEA papers and proceedings, 108, 68-71.
  • Bruhn, M., & Love, I. (2014). The real impact of improved access to finance: Evidence from Mexico. The Journal of Finance, 69(3), 1347-1376.
  • Burgess, R., & Pande, R. (2005). Do rural banks matter? Evidence from the Indian social banking experiment. American Economic Review, 95(3), 780-795.
  • Cai, R., Ma, J., Wang, S., & Cai, S. (2024). Access to credit and scale efficiency: Evidence from family farms in East China. Economic Analysis and Policy, 84, 1538-1551.
  • Chi, M., Guo, Q., Mi, L., Wang, G., & Song, W. (2022). Spatial distribution of agricultural eco-efficiency and agriculture high-quality development in China. Land, 11(5), 722.
  • Clapp, J., & Helleiner, E. (2012). Troubled futures? The global food crisis and the politics of agricultural derivatives regulation. Review of International Political Economy, 19(2), 181-207.
  • Clarke, G. R., Zou, H.-f., & Xu, L. C. (2003). Finance and income inequality: test of alternative theories (Vol. 2984): World Bank Publications.
  • Dağ, M. M., & Akbay, C. (2022). Sürdürülebilir tarımsal uygulamalar ile küresel gıda krizine karşı alternatif çözümler. Tarım Ekonomisi Araştırmaları Dergisi, 8(2), 101-113.
  • Dowling, M., & Lucey, B. (2023). ChatGPT for (finance) research: The Bananarama conjecture. Finance Research Letters, 53, 103662.
  • Fan, S., Jiang, M., Sun, D., & Zhang, S. (2023). Does financial development matter the accomplishment of rural revitalization? Evidence from China. International Review of Economics & Finance, 88, 620-633.
  • Farrin, K., & Miranda, M. J. (2015). A heterogeneous agent model of credit-linked index insurance and farm technology adoption. Journal of Development Economics, 116, 199-211.
  • Gambacorta, L., Huang, Y., Qiu, H., & Wang, J. (2024). How do machine learning and non-traditional data affect credit scoring? New evidence from a Chinese fintech firm. Journal of Financial Stability, 73, 101284.
  • Gao, Q., Sun, M., & Chen, L. (2024). The impact of digital inclusive finance on agricultural economic resilience. Finance Research Letters, 66, 105679.
  • Headey, D. (2011). Rethinking the global food crisis: The role of trade shocks. Food Policy, 36(2), 136-146.
  • Hu, Y., Liu, J., Zhang, S., Liu, Y., Xu, H., & Liu, P. (2024). New mechanisms for increasing agricultural total factor productivity: Analysis of the regional effects of the digital economy. Economic Analysis and Policy, 83, 766-785.
  • King, R. G., & Levine, R. (1993). Finance and growth: Schumpeter might be right. The Quarterly Journal of Economics, 108(3), 717-737.
  • Liu, Y., Liu, C., & Zhou, M. (2021). Does digital inclusive finance promote agricultural production for rural households in China? Research based on the Chinese family database (CFD). China Agricultural Economic Review, 13(2), 475-494.
  • Liu, Z., Zhang, M., Li, Q., & Zhao, X. (2023). The impact of green trade barriers on agricultural green total factor productivity: Evidence from China and OECD countries. Economic Analysis and Policy, 78, 319-331.
  • Mamabolo, M., Sebola, M., & Tsheola, J. (2021). The Economics Of Communal Smallholder Farming Within South Africa's Historical Agricultural Structure. Journal of Global Business & Technology, 17(2), 81-97.
  • Manogna, R., & Kulkarni, N. (2024). Does the financialization of agricultural commodities impact food security? An empirical investigation. Borsa Istanbul Review, 24(2), 280-291.
  • Mei, B., Khan, A. A., Khan, S. U., Ali, M. A. S., & Luo, J. (2022). Complementarity or substitution: a study of the impacts of internet finance and rural financial development on agricultural economic growth. Agriculture, 12(11), 1786.
  • Shahzad, S. J. H., Kumar, R. R., Zakaria, M., & Hurr, M. (2017). Carbon emission, energy consumption, trade openness and financial development in Pakistan: a revisit. Renewable and Sustainable Energy Reviews, 70, 185-192.
  • Tang, K., & Xiong, W. (2012). Index investment and the financialization of commodities. Financial Analysts Journal, 68(6), 54-74.
  • Wang, J. (2023). Digital inclusive finance and rural revitalization. Finance Research Letters, 57, 104157.
  • Wen, F., Cao, J., Liu, Z., & Wang, X. (2021). Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets. International Review of Financial Analysis, 76, 101772.
  • Zhu, K., & Guo, L. (2024). Financial technology, inclusive finance and bank performance. Finance Research Letters, 60, 104872.

The Long-Run Impact of Financial Development on Agricultural Productivity: The case of Türkiye

Yıl 2025, Sayı: 58, 295 - 308, 30.12.2025
https://doi.org/10.52642/susbed.1779239

Öz

The objective of this study is to figure out how financial development and agricultural productivity interacts in the long-run in Türkiye by using two distinct measures of agricultural productivity. Well-established and developed financial market enables farmers to reach funds at lower funding costs and in turn enhance agricultural productivity. The analyses are based on annual time series data of Türkiye for the years between 1980 and 2021. Firstly we checked the stationarity status of each variable by using Kwiatkowski-Phillips-Schmidt-Shin stationarity test. Secondly we conducted co-integration analysis by employing ARDL bounds test to see if our variables move together in the long-run. Lastly we estimated short-run and long-run coefficients by utilizing ARDL estimation technique. Positive statistically significant long-run coefficient estimation was obtained for financial development variable. According to the estimation results, if financial development index goes up by 1% then agricultural productivity per worker increases by 1.75% and agricultural productivity per capita augments by 0.87%. We also obtained positive statistically significant long-run coefficient estimations for control variables of fertilizer consumption and number registered tractors. The finding of positive association between financial development and agricultural productivity reveals the importance of developed financial market for enhancement of agricultural productivity in an economy. Therefore policy makers aiming to improve agricultural productivity should prioritize policies supporting the development of financial markets besides the other policies.

Etik Beyan

I hereby declare that this study is an original one; that I have acted in accordance with the principles and rules of scientific ethics in all stages of the study, including preparation, data collection, analysis and presentation of information; that I have cited all data and information not obtained within the scope of this study and included these sources in the bibliography; that I have not made any changes to the data used; that I have accepted the terms and conditions of the Konya Selçuk University Journal of Social Sciences Institute and have complied with ethical duties and responsibilities.

Kaynakça

  • Allen, F., Qian, J. Q., & Gu, X. (2017). An overview of China's financial system. Annual Review of Financial Economics, 9(1), 191-231.
  • Aydınbaş, G. (2023). A study on smart agriculture (agriculture 4.0) from an economic perspective. BİLTÜRK Ekonomi ve İlişkili Çalışmalar Dergisi, 5(2), 63-86.
  • Beck, T. (2002). Financial development and international trade: Is there a link? Journal of International Economics, 57(1), 107-131.
  • Bernanke, B., & Gertler, M. (1990). Financial fragility and economic performance. The Quarterly Journal of Economics, 105(1), 87-114.
  • Björkegren, D., & Grissen, D. (2018). The potential of digital credit to bank the poor. Paper presented at the AEA papers and proceedings, 108, 68-71.
  • Bruhn, M., & Love, I. (2014). The real impact of improved access to finance: Evidence from Mexico. The Journal of Finance, 69(3), 1347-1376.
  • Burgess, R., & Pande, R. (2005). Do rural banks matter? Evidence from the Indian social banking experiment. American Economic Review, 95(3), 780-795.
  • Cai, R., Ma, J., Wang, S., & Cai, S. (2024). Access to credit and scale efficiency: Evidence from family farms in East China. Economic Analysis and Policy, 84, 1538-1551.
  • Chi, M., Guo, Q., Mi, L., Wang, G., & Song, W. (2022). Spatial distribution of agricultural eco-efficiency and agriculture high-quality development in China. Land, 11(5), 722.
  • Clapp, J., & Helleiner, E. (2012). Troubled futures? The global food crisis and the politics of agricultural derivatives regulation. Review of International Political Economy, 19(2), 181-207.
  • Clarke, G. R., Zou, H.-f., & Xu, L. C. (2003). Finance and income inequality: test of alternative theories (Vol. 2984): World Bank Publications.
  • Dağ, M. M., & Akbay, C. (2022). Sürdürülebilir tarımsal uygulamalar ile küresel gıda krizine karşı alternatif çözümler. Tarım Ekonomisi Araştırmaları Dergisi, 8(2), 101-113.
  • Dowling, M., & Lucey, B. (2023). ChatGPT for (finance) research: The Bananarama conjecture. Finance Research Letters, 53, 103662.
  • Fan, S., Jiang, M., Sun, D., & Zhang, S. (2023). Does financial development matter the accomplishment of rural revitalization? Evidence from China. International Review of Economics & Finance, 88, 620-633.
  • Farrin, K., & Miranda, M. J. (2015). A heterogeneous agent model of credit-linked index insurance and farm technology adoption. Journal of Development Economics, 116, 199-211.
  • Gambacorta, L., Huang, Y., Qiu, H., & Wang, J. (2024). How do machine learning and non-traditional data affect credit scoring? New evidence from a Chinese fintech firm. Journal of Financial Stability, 73, 101284.
  • Gao, Q., Sun, M., & Chen, L. (2024). The impact of digital inclusive finance on agricultural economic resilience. Finance Research Letters, 66, 105679.
  • Headey, D. (2011). Rethinking the global food crisis: The role of trade shocks. Food Policy, 36(2), 136-146.
  • Hu, Y., Liu, J., Zhang, S., Liu, Y., Xu, H., & Liu, P. (2024). New mechanisms for increasing agricultural total factor productivity: Analysis of the regional effects of the digital economy. Economic Analysis and Policy, 83, 766-785.
  • King, R. G., & Levine, R. (1993). Finance and growth: Schumpeter might be right. The Quarterly Journal of Economics, 108(3), 717-737.
  • Liu, Y., Liu, C., & Zhou, M. (2021). Does digital inclusive finance promote agricultural production for rural households in China? Research based on the Chinese family database (CFD). China Agricultural Economic Review, 13(2), 475-494.
  • Liu, Z., Zhang, M., Li, Q., & Zhao, X. (2023). The impact of green trade barriers on agricultural green total factor productivity: Evidence from China and OECD countries. Economic Analysis and Policy, 78, 319-331.
  • Mamabolo, M., Sebola, M., & Tsheola, J. (2021). The Economics Of Communal Smallholder Farming Within South Africa's Historical Agricultural Structure. Journal of Global Business & Technology, 17(2), 81-97.
  • Manogna, R., & Kulkarni, N. (2024). Does the financialization of agricultural commodities impact food security? An empirical investigation. Borsa Istanbul Review, 24(2), 280-291.
  • Mei, B., Khan, A. A., Khan, S. U., Ali, M. A. S., & Luo, J. (2022). Complementarity or substitution: a study of the impacts of internet finance and rural financial development on agricultural economic growth. Agriculture, 12(11), 1786.
  • Shahzad, S. J. H., Kumar, R. R., Zakaria, M., & Hurr, M. (2017). Carbon emission, energy consumption, trade openness and financial development in Pakistan: a revisit. Renewable and Sustainable Energy Reviews, 70, 185-192.
  • Tang, K., & Xiong, W. (2012). Index investment and the financialization of commodities. Financial Analysts Journal, 68(6), 54-74.
  • Wang, J. (2023). Digital inclusive finance and rural revitalization. Finance Research Letters, 57, 104157.
  • Wen, F., Cao, J., Liu, Z., & Wang, X. (2021). Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets. International Review of Financial Analysis, 76, 101772.
  • Zhu, K., & Guo, L. (2024). Financial technology, inclusive finance and bank performance. Finance Research Letters, 60, 104872.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kalkınma Ekonomisi - Makro, Finansal Ekonomi
Bölüm Araştırma Makalesi
Yazarlar

Serkan Varsak 0000-0002-5894-1490

Cüneyt Koyuncu 0000-0002-8638-2761

Halit Yalçın 0000-0002-5035-1525

Gönderilme Tarihi 6 Eylül 2025
Kabul Tarihi 1 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 58

Kaynak Göster

APA Varsak, S., Koyuncu, C., & Yalçın, H. (2025). The Long-Run Impact of Financial Development on Agricultural Productivity: The case of Türkiye. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(58), 295-308. https://doi.org/10.52642/susbed.1779239


24108  28027

Bu eser Creative Commons Attribution-NonCommercial 4.0 International Lisansı ile lisanslanmıştır.