Yıl 2020, Cilt 16 , Sayı 3, Sayfalar 18 - 25 2020-12-17

Seed Disinfection Methods
Tohum Dezenfeksiyon Yöntemleri

Bahar ATMACA [1] , Gülsün Akdemir EVRENDİLEK [2]


Seeds have many microorganisms on their surfaces and these microorganisms also significantly affect seed quality and yield. For this reason, various disinfection methods are applied to the seeds to increase the productivity without adversely affecting the physicological structure of the seeds. Some of the applied methods increase germination without damaging the seed, while the others reduce germination by damaging the seed. Therefore, choosing the appropriate disinfection method to the seed is an important process to protect both the seed viability and seed vigour.
Tohumlar yüzeylerinde birçok mikroorganizma bulundurmakta ve bu mikroorganizmalar tohum kalitesini ve doğrudan ürün verimini de önemli ölçüde etkilemektedir. Bu nedenle, ürün verimliliğinde artış sağlayan ve tohumun fizyolojik yapısını olumsuz yönde etkilemeyecek çeşitli dezenfeksiyon yöntemleri uygulanmaktadır. Uygulanan yöntemlerden bazıları tohuma zarar vermeden ve çimlenmede artış sağlamakta iken bazı uygulamalar ise tohuma zarar vererek çimlenmeyi azaltmaktadır. Bu nedenle, tohuma uygulanan dezenfeksiyon yönteminin seçilmesi tohum canlılığını ve tohum refahını korumak için önemli bir işlemdir.
  • Abdul-Baki, A. A., ve Moore, G. M. 1979. Seed disinfection with hypochlorites: a selected literature review of hypochlorite chemistry and definition of terms. Journal of Seed Technology, 4(1): 43-56.
  • Afzal, I., Ur Rehman, H., Naveed, M., ve Basra, S. M. A. 2016. New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. ‘‘Alınmıştır: Recent Advances in Seed Enhancements, (ed) Araujo, S., Balestrazzi A., InTech, Rijeka, Croatia, 47-74.
  • Aliyu, T., H. 2018. The effect of sodium hypochlorite and ethanol as seed sterilants on cowpea infected with cowpea mottle virus. Nigerian Journal of Pure and Applied Sciences, 31(1): 3122-3128
  • Anonim. 2018. Gıda Tarım ve Hayvancılık Bakanlığı 2018- 2022 Stratejik Plan.
  • Araújo, S. S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D., ve Balestrazzi, A. 2016. Physical methods for seed invigoration: Advantages and challenges in seed technology. Frontiers in Plant Science, 7: 646.
  • Ariefdjohan, M. W., Nelson, P. E., Singh, R. K., Bhunia, A. K., Balasubramaniam, V. M., Singh, N. 2004. Efficacy of High Hydrostatic Pressure Treatment in Reducing Escherichia coli O157 and Listeria monocytogenes in Alfalfa Seeds. Journal of Food Science, 69(5): 117-120
  • Castro, A. J., Barbosa‐Cánovas, G. V., ve Swanson, B. G. 1993. Microbial inactivation of foods by pulsed electric fields. Journal of Food Processing and Preservation, 17(1): 47–73.
  • Dhayal, M., Lee, S. Y., Park, S. U. 2006. Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum, 80: 499-506.
  • Elamin, W. M., Endan, J. B., Yosuf, Y. A., Shamsudin, R., ve Ahmedov, A. 2015. High pressure processing technology and equipment evolution: A review. Journal of Engineering Science and Technology Review, 8(5): 75-83.
  • Erkan, S. 1998. Tohum Patolojisi. Ege Üniversitesi, Ziraat Fakültesi, Bitki Koruma Bölümü, İzmir, 200-201 s.
  • Evrendilek, G. A., ve Tanasov, I. 2017. Configuring pulsed electric fields to treat seeds: An innovative method of seed disinfection. Seed Science and Technology, 45(1): 72–80.
  • Evrendilek, G. A., Karatas, B., Uzuner, S., ve Tanasov, I. 2019. Design and effectiveness of pulsed electric fields towards seed disinfection. Journal of the Science of Food and Agriculture, 99(7): 3475–3480.
  • Groot, G. J. J. B., Hundt, A., Murphy, A. B., Bange, M. P., ve Mai-Prochnow, A. 2018. Cold plasma treatment for cotton seed germination improvement. Scientific Reports, 8(1): 1–10.
  • Hsiao, A. I. 1979. The effect of sodium hypochlorite, gibberellic acid, and light on seed dormancy and germination of wild buckwheat (Polygonurn convolvulus) and cow cockle (Saponaria vaccaria). Canadian Journal of Botany, 57(16): 1735- 1739.
  • Işlek, C., Altuner, E. M., Çeter, T., ve Alpas, H. 2013. Effect of high hydrostatic pressure on seed germination, microbial quality, anatomy-morphology and physiological characteristics of garden cress (Lepidium sativum) seedlings. High Pressure Research, 33(2): 440–450.
  • Jaeger, H., Reineke, K., Schoessler K., ve Knorr, D. 2012. Effects of Emerging Processing Technologies on Food Material Properties, ‘‘Alınmıştır: Food Materials Science and Engineering, First Edition, (ed) Bhandari, B., Roos, Y. H., Blackwell Publishing, UK, 222-261.
  • Jiang, J., Lu, Y., Li, J., Li, L., He, X., Shao, H., ve Dong, Y. 2014. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLOS one, 9(5): 1-6.
  • Kang, M.-H., Veerana, M., Eom, S., Uhm, H.-S., Ryu, S., ve Park, G. 2020. Plasma mediated disinfection of rice seeds in water and air. Journal of Physics D: Applied Physics, 53(21): 214001.
  • Kumar, S. A., P. Ajitha, Sandhya, R., Muralidaran. 2018. Comparative evaluation of antimicrobial activity of 3% sodium hypochlorite, 2% chlorhexidine, and 5% grape seed extract against Enterococcus faecalis and Candida albicans - An in vitro study. Drug Invention Today, 12(1): 53–56.
  • Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N. P., ve Rai, D. K. 2018. Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-products. Food and Bioprocess Technology, 11(2): 223–241.
  • Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S., Yuanhua, D. 2014. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific Reports, 4(1): 1–7.
  • Linton, M., ve Patterson, M. F. 2000. High pressure processing of foods for microbiological safety and quality. Acta Microbiologica et Immunologica Hungarica, 47(2–3): 175–182.
  • Los, A., Ziuzina, D., Boehm, D., Cullen, P. J., ve Bourke, P. 2019. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Processes and Polymers, 16(4): 1–12.
  • Mahajan, T. S., ve Pandey, O. P. 2014. Effect of electric field (at different temperatures) on germination of chickpea seed. African Journal of Biotechnology, 13(1): 61-67.
  • Meiqiang, Y., Mingjing, H., Buzhou, M., ve Tengcai, M. 2005. Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Science and Technology, 7(6): 3143-3147.
  • Misra, N. N., Schlüter, O., ve Cullen, P. J. 2016. Cold Plasma in Food and Agriculture. Elsevier Academic Press, London, UK, 8- 9 s.
  • Nawkar, G. M., Maibam, P., Park, J. H., Sahi, V. P., Lee, S. Y., ve Kang, C. H. 2013. UV-induced cell death in plants. International Journal of Molecular Sciences, 14(1): 1608–1628.
  • Noble, R. E. 2002. Effects of UV-irradiation on seed germination. Science of the Total Environment, 299(1-3): 173-176.
  • Oyebanji, O. B., Nweke, O., Odebunmi, O., Galadima, N. B., Idris, M. S., Nnodi U. N., Afolabi A. S., ve Ogbadu, G. H. 2009. Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. African Journal of Biotechnology, 8(20): 5395-5399.
  • Patwardhan, M. S., ve Gandhare, W. Z. 2013. High voltage electric field effects on the germination rate of tomato seeds. Acta Agrophysica, 20(2): 403–413.
  • Peñas, E., Gómez, R., Frías, J., ve Vidal-Valverde, C. 2010. Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Control, 21(1): 82– 88.
  • Pournavab, R. F., Mejía, E. B., Mendoza, A. B., Salas Cruz, L. R., ve Heya, M. N. 2019. Ultraviolet radiation effect on seed germination and seedling growth of common species from northeastern Mexico. Agronomy, 9(6): 269
  • Rajkowski, K., T., ve Ashurst, K. 2009. Use of 1% peroxyacetic acid sanitizer in an air-mixing wash basin to remove bacterial pathogens from seeds. Foodborne Pathogens and Disease, 6(9): 1041-1046
  • Ramandi, A., Javan, I. Y., Tazehabadi, F. M., ve Asl, G. I., Khosravanian, R., Ebrahimzadeh, M. H. 2019. Improvement in seed surface sterilization and in vitro seed germination of ornamental and medicinal plant-Catharanthus roseus (L.). Chiang Mai Journal of Science, 46(6): 1107–1112.
  • Randeniya, L. K., De Groot, G. J. J. B. 2015. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A Review. Plasma Processes and Polymers, 12(7): 608–623.
  • Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., ve Knorr, D. 2007. Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1): 69–112.
  • Rifna, E. J., Ratish Ramanan, K., ve Mahendran, R. 2019. Emerging technology applications for improving seed germination. Trends in Food Science and Technology, 86: 95-108.
  • Sadeghianfar, P., Nazari, M., ve Backes, G. 2019. Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea maize L) and sugar beet (Beta vulgaris) seeds. Plants, 8(2): 49
  • Selcuk, M., Oksuz, L., ve Basaran, P. 2008. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, 99(11): 5104-5109.
  • Semenov, A., Kozhushko, G., ve Sakhno, T. 2018. Influence of pre-sowing UV-radiation on the energy of germination capacity and germination ability of rapeseed. Technology Audit and Production Reserves, 5(43): 61-65.
  • Shorstkii, I., Khudyakov, D., ve Mirshekarloo, M. S. 2020. Pulsed electric field assisted sunflower oil pilot production: Impact on oil yield, extraction kinetics and chemical parameters. Innovative Food Science and Emerging Technologies, 60: 102309
  • Skin, A. M. D., Zoellner, C., ve Rizvi, S. S. H. 2013. Current intervention strategies for the microbial safety of sprouts. Journal of Food Protection, 76(12): 2099–2123
  • Sönmez, İ., Kaplan, M., ve Sönmez, S. 2008. Kimyasal gübrelerin çevre kirliliği üzerine etkileri ve çözüm önerileri. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi, 25(2): 24-34.
  • Spadaro, D., ve Gullino, M. L. 2005. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 24(7): 601–613
  • Szopińska, D. 2013. The effects of organic acids treatment on germination, vigour and health of zinnia (Zinnia elegans Jacq.) seeds. Acta Scientiarum Polonorum, Hortorum Cultus, 12(5): 17–29.
  • Takaki, K., Hayashi, N., Wang, D., ve Ohshima, T. 2019. High-voltage technologies for agriculture and food processing. Journal of Physics D: Applied Physics, 52(47): 1-42.
  • Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., ve Valdramidis, V. P. 2018. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science and Technology, 77 (2018): 21-31
  • Thirumdas, R., Kothakota, A., Kiran, K., Pandiselvam, R., ve Prakash, V. 2017. Exploitation of cold plasma technology in agriculture. Advances in Research, 12(4): 1–7.
  • Trząskowska, M., Dai, Y., Delaquis, P., ve Wang, S. 2018. Pathogen reduction on mung bean reduction of Escherichia coli O157:H7, Salmonella Enterica and Listeria monocytogenes on mung bean using combined thermal and chemical treatments with acetic acid and hydrogen peroxide. Food Microbiology, 76: 62-88.
  • Wuytack, E. Y., Diels, A. M. J., Meersseman, K., ve Michiels, C. W. 2003. Decontamination of seeds for seed sprout production by high hydrostatic pressure. Journal of Food Protection, 66(6): 918–923.
  • Yordanov, D. G., ve Angelova, G. V. 2010. High pressure processing for foods preserving. Biotechnology and Biotechnological Equipment, 24(3): 1940–1945.
Birincil Dil tr
Konular Fen
Bölüm Makaleler
Yazarlar

Yazar: Bahar ATMACA
Kurum: Bolu Abant İzzet Baysal Üniversitesi
Ülke: Turkey


Yazar: Gülsün Akdemir EVRENDİLEK (Sorumlu Yazar)
Kurum: Bolu Abant İzzet Baysal Üniversitesi
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 17 Aralık 2020

Bibtex @derleme { tarmak726434, journal = {Tarım Makinaları Bilimi Dergisi}, issn = {1306-0007}, eissn = {2651-4230}, address = {}, publisher = {Tarım Makinaları Derneği}, year = {2020}, volume = {16}, pages = {18 - 25}, doi = {}, title = {Tohum Dezenfeksiyon Yöntemleri}, key = {cite}, author = {Atmaca, Bahar and Evrendilek, Gülsün Akdemir} }
APA Atmaca, B , Evrendilek, G . (2020). Tohum Dezenfeksiyon Yöntemleri . Tarım Makinaları Bilimi Dergisi , 16 (3) , 18-25 . Retrieved from https://dergipark.org.tr/tr/pub/tarmak/issue/58259/726434
MLA Atmaca, B , Evrendilek, G . "Tohum Dezenfeksiyon Yöntemleri" . Tarım Makinaları Bilimi Dergisi 16 (2020 ): 18-25 <https://dergipark.org.tr/tr/pub/tarmak/issue/58259/726434>
Chicago Atmaca, B , Evrendilek, G . "Tohum Dezenfeksiyon Yöntemleri". Tarım Makinaları Bilimi Dergisi 16 (2020 ): 18-25
RIS TY - JOUR T1 - Tohum Dezenfeksiyon Yöntemleri AU - Bahar Atmaca , Gülsün Akdemir Evrendilek Y1 - 2020 PY - 2020 N1 - DO - T2 - Tarım Makinaları Bilimi Dergisi JF - Journal JO - JOR SP - 18 EP - 25 VL - 16 IS - 3 SN - 1306-0007-2651-4230 M3 - UR - Y2 - 2020 ER -
EndNote %0 Tarım Makinaları Bilimi Dergisi Tohum Dezenfeksiyon Yöntemleri %A Bahar Atmaca , Gülsün Akdemir Evrendilek %T Tohum Dezenfeksiyon Yöntemleri %D 2020 %J Tarım Makinaları Bilimi Dergisi %P 1306-0007-2651-4230 %V 16 %N 3 %R %U
ISNAD Atmaca, Bahar , Evrendilek, Gülsün Akdemir . "Tohum Dezenfeksiyon Yöntemleri". Tarım Makinaları Bilimi Dergisi 16 / 3 (Aralık 2020): 18-25 .
AMA Atmaca B , Evrendilek G . Tohum Dezenfeksiyon Yöntemleri. TMBD. 2020; 16(3): 18-25.
Vancouver Atmaca B , Evrendilek G . Tohum Dezenfeksiyon Yöntemleri. Tarım Makinaları Bilimi Dergisi. 2020; 16(3): 18-25.
IEEE B. Atmaca ve G. Evrendilek , "Tohum Dezenfeksiyon Yöntemleri", Tarım Makinaları Bilimi Dergisi, c. 16, sayı. 3, ss. 18-25, Ara. 2020