Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the ecology and heavy metal tolerance limits of Alyssum Pateri subsp. Pateri growing on ultramafic soils

Yıl 2019, Cilt: 7 Sayı: 2, 110 - 120, 31.12.2019
https://doi.org/10.33409/tbbbd.668650

Öz

Today, one of the major global problems facing healthy food supply is soil pollution. Soil pollution caused by human is an important
source of this problem, while soil pollution caused by heavy metals caused by decomposition of the bedrock is another part of the
basic problem. In general, soils composed of ultramafic regolites are famous for hosting plants with special adaptations such as
nickel or manganese hyperaccumulation and flora with a high level of endemism. It usually has nutrient deficiency or phytotoxic
trace elements, especially high nickel concentrations. This research was carried out in Kahramanmaraş Province to determine the
ecology and heavy metal tolerance limit of Alyssum pateri subsp. pateri plant known as nickel (Ni) accumulator. According to the
research findings, it is understood that ultramafic geoecology can have different characteristics in the same macro climate but in
different geographies. While total Ni content in soil was 7.08ppm, Ni content of Alyssum pateri subsp. pateri plant was 4061.27 ppm
and 3653.62ppm in gal formation. While the total calcium (Ca) concentration was 1735.70 ppm in soil, it was determined as
21268.88 ppm in plant and 21013.98 ppm in gal formation. In addition to the general hypercumulatory properties of Alyssum pateri
subsp. pateri plant, gal formation occurring in the plant has hyperacumulatory properties as much as the plant. These areas with
high endemism should be protected and some activities such as mining, agriculture and clear cutting that put stress on the
ecosystem should be avoided. Geoecology of heavy metal accumulator plant species should be investigated and phytoremediation
processes should be analyzed and recycled.

Kaynakça

  • Abou-Shanab RAI, Angle JS, Chaney RL, 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem, 38(9): 2882-2889.
  • Adıgüzel N, Reeves RD, 2002. A new nickel-accumulating species of Alyssum (Cruciferae) from Western Turkey. Edinb J Bot. 59(02):215 – 219.
  • Alexander EB, 2009. Soil and vegetation differences from peridotite to serpentinite. Northeast Nat 16(5):178–192.
  • Altınözlü H, Karagöz A, Polat T, Ünver İ, 2012. Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot, 36: 269-280.
  • Anacker BL, Harrison SP, 2012. Climate and the evolution of serpentine endemism in California. Evol Ecol 26:1011–1023.
  • Anonim, 1982. Methods of Soil Analysis- Part II, Chemical and Microbiological Properties, Argonomy Monograph No:9 323-336, ASA-SSSA, Medison, Wisconsin, USA. Anonim, 1992. Orman Genel Müdürlüğü. Yeşil Kuşak Ağaçlandırma Çalışmaları, Tamim No:10.
  • Anonim, 2019. Toprak Kirliliğinin Kontrolü Yönetmeliği. Çevre ve Orman Bakanlığı http://www.resmigazete.gov.tr/eskiler/2005/05/20050531-6.htm Erişim tarihi: 12.09.2019.
  • Antonkiewicz J, Jasiewicz C, 2002. The use of plants accumulating heavy metals for detoxication of chemically polluted soils. Electron J Pol Agric Univ, 5(1).
  • Ateş Ş, Osmançelebioğlu R, Özata A, Karakaya FG, Aksoy A, Mutlu G, Duman TY, Özerk OC, Yeleser L, Çiçek İ, 2008. Kahramanmaraş İli ve Kentsel Alanların (İl-İlçe Merkezleri) Yerbilim Verileri, Ankara.
  • Avcı M, 2005. Çeşitlilik ve Endemizm Açısından Türkiye’nin Bitki Örtüsü. İstanbul Üniversitesi Edebiyat Fakültesi Dergisi, 13:27-55.
  • Aybar M, Bilgin A, Sağlam B, 2015. Fitoremediasyon Yöntemi İle Topraktaki Ağır Metallerin Giderimi. Doğal Afetler ve Çevre Dergisi. Cilt:1 ∙ Sayı:1-2 ∙ Sayfa:59-65.
  • Batianoff GN, Singh S, 2001. Central Queensland serpentine landforms, plant ecology and endemism. S Afr J Sci, 97:495-500.
  • Bouyoucos GJ, 1962. Hydrometer method improved for making particle size analyses of soils. Agron J, 54: 464-465.
  • Boyd RS, Jaffré T, Odom JW, 1999. Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica, 31: 403.
  • Brady KU, Kruckeberg AR, Bradshaw Jr H D, 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst, 36: 243–266.
  • Brooks RR, 1987. In Serpentine and Its Vegetation, ed.TR Dudley. Portland, OR: Dioscorides. 454 pp.
  • Brooks RR, Yang XH, 1984. Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe and their significance as controlling factors for this flora. Taxon, 33:392–99.
  • Chen HM, Zheng CR, Tu C, Shen ZG, 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals, Chemosphere, 41, 229-234.
  • Demirsoy A, 1999. Yaşamın Temel Kuralları, Omurgasızlar/Böcekler, Entomoloji. ISBN:975-7746-02-9, Sh:272-274, 6. Baskı.
  • Dudley TR, Alyssum L. In: Davis, P.H. 1965. Flora of Turkey and The East Aegean Island, Volume 1, pp.399-400, Edinburg at the University Press.
  • EPA, 2000. Environmental Protection Agency, Introduction of phytoremediation, epa/600/R-99/107, Cincinati, Ohio, U.S.A2000: 72.
  • Jaffré T, L’Huillier L, 2010. La vegetation des roches ultramafiques ou terrains miniers. In: L’Huillier L, Jaffré T, Wulf A (eds) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea.
  • Janzen HH, 2004. Carbon cycling in earth systems-a soil science perspective. Agr, Ecosyst Environ, 104:399-417.
  • Khan AG, Kuek C, Chaudhry TM Khoo CS, Hayes WJ. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation, Chemosphere, 41, 197-207.
  • Kocaer FO, Başkaya HS, 2003. Metallerle Kirlenmiş Toprakların Temizlenmesinde Uygulanan Teknolojiler, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 8, Sayı 1.
  • Kruckeberg AR, 1954. The ecology of serpentine soils: A symposium. III. Plant species in relation to serpentine soils. Ecology 35:267– 74.
  • Kruckeberg AR 1985. California Serpentines:Flora, Vegetation, Geology, Soils, and Management Problems. Berkeley: Univ. Calif. Press. 180 pp.
  • Kruckeberg AR, Adıgüzel N, Reeves RD, 1999. Glimpses pf flora and ecology of Turkish (Anatolian) serpantines. The Karaca Arboretum Magazine 5: 67-86.
  • Lasat MM, 2000. Phytoextraction of metals from contaminated soil: A review of plant/ soil/ metal interaction and assessment of pertinent Agronomic Issues. J Hazard Substan Res, 2(5), 1-25.
  • Laz B, Babur E, Akpınar DM, Avgın SS, 2018. Kahramanmaraş-Elmalar Yeşil Kuşak Ek-3 Plantasyon Sahasında Görülen Biyotik ve Abiyotik Zararlıların Tespiti, KSÜ Tarım ve Doğa Derg. 21(6):926-935.
  • MTA, 2015. Türkiye Jeoloji ve Formasyon Haritası. Maden Tetkik Arama Genel Müdürlüğü Yayınları. Ankara http://www.mta.gov.tr/v3.0/hizmetler/jeoloji-haritalari Mulligan CN, Yong RN, Gibbs BF, 2001. Remediation technologies for metalccontaminated soils and groundwater: an evaluation, Engineering Geology, 60, 193-207.
  • Mutlu B, 2012. Alyssum. Şu sitede: Bizimbitkiler (2013). <http://www.bizimbitkiler.org.tr>, [er. tar.: 09.09.2019].
  • Özdeniz E, Özbey BG, Kurt L, Bölükbaşı A, 2017. Serpantin Ekolojisi ve Türkiye Serpantin Florası’na Katkılar. Toprak Bilimi ve Bitki Besleme Dergisi, 5 (1): 22 – 33.
  • Palm ER, Van Volkenburgh E, 2014. Physiological adaptations of plants to serpentine soils. In: Rajakaruna N, Boyd RS, Harris TB (eds) Plant ecology and evolution in harsh environments. Nova Science Publishers, Hauppauge.
  • Proctor J, 1970. Magnesium as a toxic element. Nature, 227:742–43.
  • Proctor J, 1971. The plant ecology of serpentine. II. Plant responses to serpentine soils. J Ecol, 59:397–410.
  • Proctor J, Woodell SRJ, 1975. The ecology of serpentine soils. Adv Ecol Res, 9:255– 365.
  • Rajakaruna N, 2004. The edaphic factor in the origin of species. Int Geol Rev 46:471–478.
  • Raskin I, Kumar N, Dushenkov S, Salt D, 1994. Bioconcentration of metals by plants, Curr Opin Biotech, 5:285-290.
  • Reeves RD, Kruckeberg AR, Adıgüzel N, Kramer U, 2001. Studies on the flora of serpanrine and other metalliferous areas of Western Turkey. S Afr J Sci, 97: 513-517.
  • Reeves RD, Adıgüzel N, 2008. The nickel hyperaccumulating plants of the serpentines of Turkey and adjacent areas: A review with new data. Turk J Biol, 32: 143-153.
  • Terzi H, Yıldız M, 2011. Ağır metaller ve fitoremediasyon: fizyolojik ve moleküler mekanizmalar, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11(2011), 1-22.
  • Ünver İ, Madenoğlu S, Özbek K, 2009. Available Ni potentials of Batıern Anadolu. International Geology Symposium, 6-9 Şubat 2009, MTA Gn Md Kültür Sitesi, Ankara, sf: 146-153.
  • Vithanage M, Rajapaksha AU, Oze C, Rajakaruna N, Dissanayake CB, 2014. Metal release from serpentine soils in Sri Lanka. Environ Monit Assess 186(6):3415–3429.
  • Vlamis J, Jenny H, 1948. Calcium Deficiency in Serpentine Soils as Revealed by Adsorbent Technique. Science. Vol. 107, Issue 2786, pp. 549.
  • Walker RB, 1948. A study of serpentine soil infertility with special reference to edaphic endemism. Univ. Calif., Berkeley, PhD thesis, 101 pp.
  • Walker RB, Walker HM, Ashworth PR, 1955. Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol. 30:214–21.
  • Walkley A, Black A, 1934. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Sci, 37: 29–38.
  • Zhang L, Angle JS, Chaney RL, 2007. Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants? New Phytol, 173(3): 509-516.

Ultramafik topraklardaki Alyssum Pateri subsp. Pateri bitkisinin ekolojisi ve ağır metal tolerans sınırının belirlenmesi

Yıl 2019, Cilt: 7 Sayı: 2, 110 - 120, 31.12.2019
https://doi.org/10.33409/tbbbd.668650

Öz

Günümüzde sağlıklı gıda temininin önündeki en büyük engellerden birisi küresel bir sorun haline gelen toprak kirliliğidir. İnsan
etkisi ya da anakayanın ayrışması sonucu topraklardaki ağır metal konsantrasyonun artması toprak kirliliğinin başlıca kaynaklarını
oluşturmaktadır. Genel olarak Ultramafik regolitlerden oluşan topraklar, nikel veya mangan gibi ağır metallerin hiperakümülasyonu
gibi özel adaptasyonlara sahip bitkilere ve yüksek endemizm floralarasına sahip olduğu bilinmektedir. Genellikle bu bitkiler besin
elementi eksikliği veya fitotoksik iz elementlerine özellikle yüksek nikel (Ni) konsantrasyonlarına sahiptir. Bu araştırma
hiperakümülatör olarak bilinen Alyssum pateri subsp. pateri bitkisinin farklı bir yetişme ortamındaki ekolojisi ve ağır metal tolerans
sınırının belirlenmesi amacıyla Kahramanmaraş İlinde yürütülmüştür. Araştırma bulgularına göre ultramafik jeoekolojisinin aynı
makro iklimde ve fakat değişik coğrafyalarda faklı özelliklere sahip olabildikleri anlaşılmıştır. Topraktaki toplam nikel (Ni) miktarı
ortalama 7.08 ppm iken Alyssum pateri subsp. pateri bitkisinde en yüksek Ni miktarı 4061.27 ppm, bitkinin üzerindeki gal
oluşumunda ise 3653.62 ppm olarak tespit edilmiştir. Toplam Ca konsantrasyonu toprakta 1735.70 ppm iken, bitkide ortalama
21268.88 ppm, gal oluşumunda ise 21013.98 ppm olarak belirlenmiştir. Araştırma alanında Alyssum pateri subsp. pateri bitkisinin
genel hiperakümülatör özelliğine ek olarak bitkide meydana gelen gal oluşumlarının da bitki kadar hiperakümülatör özellik taşıdığı
ortaya konulmuştur. Endemik bitki türlerini bolca bulunduran bu alanlar koruma altına alınmalıdır. Başta madencilik, tarım ve
tıraşlama kesimleri vb. ekosistemi strese sokacak faaliyetlerden kaçınılmalıdır. Ağır metal toplayıcı bitki türlerinin ise jeoekolojisi
araştırılmalı ve fitoremediasyon bitkileri olarak ağır metalce yoğun alan toprakların ıslahında kullanımına önem verilmelidir.

Kaynakça

  • Abou-Shanab RAI, Angle JS, Chaney RL, 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem, 38(9): 2882-2889.
  • Adıgüzel N, Reeves RD, 2002. A new nickel-accumulating species of Alyssum (Cruciferae) from Western Turkey. Edinb J Bot. 59(02):215 – 219.
  • Alexander EB, 2009. Soil and vegetation differences from peridotite to serpentinite. Northeast Nat 16(5):178–192.
  • Altınözlü H, Karagöz A, Polat T, Ünver İ, 2012. Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot, 36: 269-280.
  • Anacker BL, Harrison SP, 2012. Climate and the evolution of serpentine endemism in California. Evol Ecol 26:1011–1023.
  • Anonim, 1982. Methods of Soil Analysis- Part II, Chemical and Microbiological Properties, Argonomy Monograph No:9 323-336, ASA-SSSA, Medison, Wisconsin, USA. Anonim, 1992. Orman Genel Müdürlüğü. Yeşil Kuşak Ağaçlandırma Çalışmaları, Tamim No:10.
  • Anonim, 2019. Toprak Kirliliğinin Kontrolü Yönetmeliği. Çevre ve Orman Bakanlığı http://www.resmigazete.gov.tr/eskiler/2005/05/20050531-6.htm Erişim tarihi: 12.09.2019.
  • Antonkiewicz J, Jasiewicz C, 2002. The use of plants accumulating heavy metals for detoxication of chemically polluted soils. Electron J Pol Agric Univ, 5(1).
  • Ateş Ş, Osmançelebioğlu R, Özata A, Karakaya FG, Aksoy A, Mutlu G, Duman TY, Özerk OC, Yeleser L, Çiçek İ, 2008. Kahramanmaraş İli ve Kentsel Alanların (İl-İlçe Merkezleri) Yerbilim Verileri, Ankara.
  • Avcı M, 2005. Çeşitlilik ve Endemizm Açısından Türkiye’nin Bitki Örtüsü. İstanbul Üniversitesi Edebiyat Fakültesi Dergisi, 13:27-55.
  • Aybar M, Bilgin A, Sağlam B, 2015. Fitoremediasyon Yöntemi İle Topraktaki Ağır Metallerin Giderimi. Doğal Afetler ve Çevre Dergisi. Cilt:1 ∙ Sayı:1-2 ∙ Sayfa:59-65.
  • Batianoff GN, Singh S, 2001. Central Queensland serpentine landforms, plant ecology and endemism. S Afr J Sci, 97:495-500.
  • Bouyoucos GJ, 1962. Hydrometer method improved for making particle size analyses of soils. Agron J, 54: 464-465.
  • Boyd RS, Jaffré T, Odom JW, 1999. Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica, 31: 403.
  • Brady KU, Kruckeberg AR, Bradshaw Jr H D, 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst, 36: 243–266.
  • Brooks RR, 1987. In Serpentine and Its Vegetation, ed.TR Dudley. Portland, OR: Dioscorides. 454 pp.
  • Brooks RR, Yang XH, 1984. Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe and their significance as controlling factors for this flora. Taxon, 33:392–99.
  • Chen HM, Zheng CR, Tu C, Shen ZG, 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals, Chemosphere, 41, 229-234.
  • Demirsoy A, 1999. Yaşamın Temel Kuralları, Omurgasızlar/Böcekler, Entomoloji. ISBN:975-7746-02-9, Sh:272-274, 6. Baskı.
  • Dudley TR, Alyssum L. In: Davis, P.H. 1965. Flora of Turkey and The East Aegean Island, Volume 1, pp.399-400, Edinburg at the University Press.
  • EPA, 2000. Environmental Protection Agency, Introduction of phytoremediation, epa/600/R-99/107, Cincinati, Ohio, U.S.A2000: 72.
  • Jaffré T, L’Huillier L, 2010. La vegetation des roches ultramafiques ou terrains miniers. In: L’Huillier L, Jaffré T, Wulf A (eds) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea.
  • Janzen HH, 2004. Carbon cycling in earth systems-a soil science perspective. Agr, Ecosyst Environ, 104:399-417.
  • Khan AG, Kuek C, Chaudhry TM Khoo CS, Hayes WJ. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation, Chemosphere, 41, 197-207.
  • Kocaer FO, Başkaya HS, 2003. Metallerle Kirlenmiş Toprakların Temizlenmesinde Uygulanan Teknolojiler, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 8, Sayı 1.
  • Kruckeberg AR, 1954. The ecology of serpentine soils: A symposium. III. Plant species in relation to serpentine soils. Ecology 35:267– 74.
  • Kruckeberg AR 1985. California Serpentines:Flora, Vegetation, Geology, Soils, and Management Problems. Berkeley: Univ. Calif. Press. 180 pp.
  • Kruckeberg AR, Adıgüzel N, Reeves RD, 1999. Glimpses pf flora and ecology of Turkish (Anatolian) serpantines. The Karaca Arboretum Magazine 5: 67-86.
  • Lasat MM, 2000. Phytoextraction of metals from contaminated soil: A review of plant/ soil/ metal interaction and assessment of pertinent Agronomic Issues. J Hazard Substan Res, 2(5), 1-25.
  • Laz B, Babur E, Akpınar DM, Avgın SS, 2018. Kahramanmaraş-Elmalar Yeşil Kuşak Ek-3 Plantasyon Sahasında Görülen Biyotik ve Abiyotik Zararlıların Tespiti, KSÜ Tarım ve Doğa Derg. 21(6):926-935.
  • MTA, 2015. Türkiye Jeoloji ve Formasyon Haritası. Maden Tetkik Arama Genel Müdürlüğü Yayınları. Ankara http://www.mta.gov.tr/v3.0/hizmetler/jeoloji-haritalari Mulligan CN, Yong RN, Gibbs BF, 2001. Remediation technologies for metalccontaminated soils and groundwater: an evaluation, Engineering Geology, 60, 193-207.
  • Mutlu B, 2012. Alyssum. Şu sitede: Bizimbitkiler (2013). <http://www.bizimbitkiler.org.tr>, [er. tar.: 09.09.2019].
  • Özdeniz E, Özbey BG, Kurt L, Bölükbaşı A, 2017. Serpantin Ekolojisi ve Türkiye Serpantin Florası’na Katkılar. Toprak Bilimi ve Bitki Besleme Dergisi, 5 (1): 22 – 33.
  • Palm ER, Van Volkenburgh E, 2014. Physiological adaptations of plants to serpentine soils. In: Rajakaruna N, Boyd RS, Harris TB (eds) Plant ecology and evolution in harsh environments. Nova Science Publishers, Hauppauge.
  • Proctor J, 1970. Magnesium as a toxic element. Nature, 227:742–43.
  • Proctor J, 1971. The plant ecology of serpentine. II. Plant responses to serpentine soils. J Ecol, 59:397–410.
  • Proctor J, Woodell SRJ, 1975. The ecology of serpentine soils. Adv Ecol Res, 9:255– 365.
  • Rajakaruna N, 2004. The edaphic factor in the origin of species. Int Geol Rev 46:471–478.
  • Raskin I, Kumar N, Dushenkov S, Salt D, 1994. Bioconcentration of metals by plants, Curr Opin Biotech, 5:285-290.
  • Reeves RD, Kruckeberg AR, Adıgüzel N, Kramer U, 2001. Studies on the flora of serpanrine and other metalliferous areas of Western Turkey. S Afr J Sci, 97: 513-517.
  • Reeves RD, Adıgüzel N, 2008. The nickel hyperaccumulating plants of the serpentines of Turkey and adjacent areas: A review with new data. Turk J Biol, 32: 143-153.
  • Terzi H, Yıldız M, 2011. Ağır metaller ve fitoremediasyon: fizyolojik ve moleküler mekanizmalar, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11(2011), 1-22.
  • Ünver İ, Madenoğlu S, Özbek K, 2009. Available Ni potentials of Batıern Anadolu. International Geology Symposium, 6-9 Şubat 2009, MTA Gn Md Kültür Sitesi, Ankara, sf: 146-153.
  • Vithanage M, Rajapaksha AU, Oze C, Rajakaruna N, Dissanayake CB, 2014. Metal release from serpentine soils in Sri Lanka. Environ Monit Assess 186(6):3415–3429.
  • Vlamis J, Jenny H, 1948. Calcium Deficiency in Serpentine Soils as Revealed by Adsorbent Technique. Science. Vol. 107, Issue 2786, pp. 549.
  • Walker RB, 1948. A study of serpentine soil infertility with special reference to edaphic endemism. Univ. Calif., Berkeley, PhD thesis, 101 pp.
  • Walker RB, Walker HM, Ashworth PR, 1955. Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol. 30:214–21.
  • Walkley A, Black A, 1934. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Sci, 37: 29–38.
  • Zhang L, Angle JS, Chaney RL, 2007. Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants? New Phytol, 173(3): 509-516.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Turgay Dindaroğlu Bu kişi benim

Emre Babur

Bülent Laz Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

APA Dindaroğlu, T., Babur, E., & Laz, B. (2019). Ultramafik topraklardaki Alyssum Pateri subsp. Pateri bitkisinin ekolojisi ve ağır metal tolerans sınırının belirlenmesi. Toprak Bilimi Ve Bitki Besleme Dergisi, 7(2), 110-120. https://doi.org/10.33409/tbbbd.668650
AMA Dindaroğlu T, Babur E, Laz B. Ultramafik topraklardaki Alyssum Pateri subsp. Pateri bitkisinin ekolojisi ve ağır metal tolerans sınırının belirlenmesi. tbbbd. Aralık 2019;7(2):110-120. doi:10.33409/tbbbd.668650
Chicago Dindaroğlu, Turgay, Emre Babur, ve Bülent Laz. “Ultramafik Topraklardaki Alyssum Pateri Subsp. Pateri Bitkisinin Ekolojisi Ve ağır Metal Tolerans sınırının Belirlenmesi”. Toprak Bilimi Ve Bitki Besleme Dergisi 7, sy. 2 (Aralık 2019): 110-20. https://doi.org/10.33409/tbbbd.668650.
EndNote Dindaroğlu T, Babur E, Laz B (01 Aralık 2019) Ultramafik topraklardaki Alyssum Pateri subsp. Pateri bitkisinin ekolojisi ve ağır metal tolerans sınırının belirlenmesi. Toprak Bilimi ve Bitki Besleme Dergisi 7 2 110–120.
IEEE T. Dindaroğlu, E. Babur, ve B. Laz, “Ultramafik topraklardaki Alyssum Pateri subsp. Pateri bitkisinin ekolojisi ve ağır metal tolerans sınırının belirlenmesi”, tbbbd, c. 7, sy. 2, ss. 110–120, 2019, doi: 10.33409/tbbbd.668650.
ISNAD Dindaroğlu, Turgay vd. “Ultramafik Topraklardaki Alyssum Pateri Subsp. Pateri Bitkisinin Ekolojisi Ve ağır Metal Tolerans sınırının Belirlenmesi”. Toprak Bilimi ve Bitki Besleme Dergisi 7/2 (Aralık 2019), 110-120. https://doi.org/10.33409/tbbbd.668650.
JAMA Dindaroğlu T, Babur E, Laz B. Ultramafik topraklardaki Alyssum Pateri subsp. Pateri bitkisinin ekolojisi ve ağır metal tolerans sınırının belirlenmesi. tbbbd. 2019;7:110–120.
MLA Dindaroğlu, Turgay vd. “Ultramafik Topraklardaki Alyssum Pateri Subsp. Pateri Bitkisinin Ekolojisi Ve ağır Metal Tolerans sınırının Belirlenmesi”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 7, sy. 2, 2019, ss. 110-2, doi:10.33409/tbbbd.668650.
Vancouver Dindaroğlu T, Babur E, Laz B. Ultramafik topraklardaki Alyssum Pateri subsp. Pateri bitkisinin ekolojisi ve ağır metal tolerans sınırının belirlenmesi. tbbbd. 2019;7(2):110-2.