Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Nano Zn -Bio fertilizer formulation on the response of tomato plant against salt stress

Yıl 2019, Cilt: 7 Sayı: 2, 149 - 157, 31.12.2019
https://doi.org/10.33409/tbbbd.668898

Öz

The objective of this study was to determine the effects of zinc nanoparticles (ZnO-Nps) and Bacillus group bacteria on plant growth (dry matter production) and mineral content of tomato under salt stress conditions. For creating salt stress for tomato, 100 mg/L-1 zinc oxide nanoparticles were mixed with 50 Mmolar NaCl buffer. This buffer mixture was applied to bacteria using the standard disk diffusion method, 30 µg mixing buffer was applied to the disks. Three microorganisms (Bacillus subtilis (N28), Bacillus pumilis (N1) Lactobacillus casei (Nm24) were selected and observed by scanning electron microscopy (SEM) and Raman spectroscopy. Linda (Lycopersicon esculentum) was selected as the experimental plant in greenhouse conditions, 1 kg sand and 0,3 kg peat moss per pot were prepared and three doses of zinc nanoparticles (0, 20, 40 mg L-1 ZnO-NPS), 3 bacteria [Bacillus pumilis (N1), Bacillus subtilis (N28), Lactobacillus casei (Nm24) were tested with four replications. The prepared formulation was mixed with water and applied with a rate of 100 liter per decare. The effects of treatments on dry matter content, plant on nutrient content (nitrogen (N) potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn) and boron (B) contents were evaluated. The results indicated that the increasing rates in dry matter content, phosphorus , potassium, calcium, magnesium, zinc, iron, manganese, cupper, boron and total nitrogen contents of leaf were 31.3% 15,64 %, 2,75 %, 8.2 %, 17,19 %, 19,01 %, 7,75 %, 14,6%, 12,71 23.8% respectively, with B. subtilis (N28)+40 Znanops application. It was clearly shown that the combination of zinc particles and Bacillus pumilis (N1), Bacillus subtilis (N28), actobacillus casei (Nm24) in nanoparticles had statistically significant effect on reducing crop yield loss and yield properties under salt stress conditions. Plant nutrients and ion balance in addition to their contribution to the enzymatic effect mechanism creating the plant has important effects in reducing stress. Especially in the next 20-30 years, according to scenario put forward by climatic scientists, this kind of problems in plant production will increase gradually against developments in this direction is a very valuable work in terms of solution to problems. If this study is calibrated with the studies to be done in field conditions, it may be necessary to give the existing formulations or additional needed Nano particular nutrient in the different salt stress conditions.

Kaynakça

  • Alharby HF, 2016. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi Journal of Biological Sciences 23: 773-781.
  • Bilgin N, Yıldız, N, 2008. Besin kültüründe yetiştirilen (Kaya-F1) domates çeşidinin (Lycopersicon esculentum) artan nacl uygulamalarına toleransı ve tuzluluk stresinin kuru madde miktarı ile bitki mineral madde içeriğine etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 9: 15-21.
  • Bremner JM, 1996. Nitrogen Total. In: Sparks, D.L., Ed., Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5, Soil Sci. Soci. of America, Madison, Wisconsin, 1085-1122.
  • Flores HE, Galston AW, 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiology 69, 701–706.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909–930.
  • Iqbal M, Ashraf M, 2006. Wheat seed priming in relation to salt tolerance: growth, yield and levels of free salicylic acid and polyamines. Annales Botanici Fennici 43, 250–259.
  • Kazan K, 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science 20, 219–229.
  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA, 2016. Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regulation 78: 1-11.
  • Kotuby J, Koenig R, Kitchen B, 1997. Salinity and Plant Tolerance. Utah State Üniversity Extension. AG-SO-03., Utah.plants. Environ. Sci. Technol. 48, 4376e4385.
  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai Y, Braam J, 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis Thaliana. Environmental Toxicology and Chemistry 29, 669–675.
  • Lin D, Xing B, 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution 150, 243–250.
  • Lopez MV, Satti SME, 1996. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress, Plant Science 114, 19-27.
  • Mengel K, Kirkby EA, 2001. Principles of Plant Nutrition. ISBN 0-7923-7150-X (HB) Published by Kluwer Academic Publishers. The Netherlands.
  • Mertens D, 2005a. AOAC official method 922.02. In: Horwitz, W., Latimer, G.W. (Eds.), Plants Preparation of Laboratory Sample. Official Methods of Analysis, 18th ed. AOAC-International Suite, Gaitherburg, MD, USA, (Chapter 3), pp. 1–2. [18].
  • Mertens D, 2005b. AOAC official method 975.03. In: Horwitz, W., Latimer, G.W.(Eds.), Metal in Plants and Pet Foods. Official Methods of Analysis, 18th ed. AOAC-International Suite, Gaitherburg, MD, USA, (Chapter 3), pp. 3– 4.
  • Mosanna R, Khalilvand BE, 2015. Morpho-physiological response of maize (Zea mays L.) to zinc nano-chelate foliar and soil application at different growth stages. Journal on New Biological Reports 4, 46–50.
  • Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamya V, Raja Reddy, K Sreeprasad TS, Sajanlal PR, Pradeep T, 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35, 905–927.
  • Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC, 2013. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing 3, 353–364.
  • Smith W.E, Dent G, 2005. Modern Raman Spectroscopy – A Practical Approach, John Wiley & Sons Ltd, Chichester, s.135-136.
  • Smith, TA, 1985. Polyamines. Annual Review of Plant Physiology 36, 117–143.
  • Soydam S, Aras S, 2013. Relationships among lipid peroxidation, SOD enzyme activity, and SOD gene expression profile in Lycopersicum esculentum L. exposed to cold stress. Genetics and Molecular Research 12, 3220–3229.
  • Subramanian KS, Sharmila RC, 2012. Ball milled nanosized zeolite loaded with zinc sulfate: a putative slow release Zn fertilizer. Int. J. Innov. Hortic. 1, 33–40.
  • Yıldız N, 2012. Bitki Beslemenin Esasları ve Bitkilerde Beslenme Bozukluğu Belirtileri. Eser ofset matbaacılık, Erzurum.
  • Yıldız N, Bircan H, 1994. Araştırma ve Deneme Metodları Atatu rk U ni. Ziraat Fak. Yay. No. 697. Erzurum.
  • Yıldız N, Canbolat M. ve Aydın A, 2000. Influence of increasing NaCl and NaHCO3 on tomato plant grown in hydroculture. Workshop on Enviromental impact of water quality, irrigation practices. Soil type and crop interactions. November 7, 2000. Antalya-Turkey.
  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, GardeaTorresday JL, 2014. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry. 62, 2752–2759.

Domates bitkisinin tuz stresine karşı tepkisinde Nano Zn-Biyo gübre formülasyonlarının etkisi

Yıl 2019, Cilt: 7 Sayı: 2, 149 - 157, 31.12.2019
https://doi.org/10.33409/tbbbd.668898

Öz

Çalışmanın amacı, çinkooksit nanopartikülleri (ZnO-Nps) ile Bacillus grubu (Bacillus subtilis (N28), Bacillus pumilis (N1) ve peynir
kökenli Lactobacillus casei (Nm24) bakteri formülasyonun tuz stresi koşullarında domates bitkisinin gelişimi ve mineral içeriği
üzerine etkilerinin araştırılmasıdır. Domates bitkisine tuz stresi oluşturmak amacıyla, 100 mg L-1 çinkooksit nanopartikülleri ile
birlikte 50 mMolar NaCl tampon karışımı hazırlanmıştır. Bu tampon mikroorganizmalar üzerinde standart disk difüzyon yöntemi
kullanılarak petrilere yerleştirilip disklere (30 µg) emdirilerek bakterilere uygulanmıştır. Bu koşullarda, canlılıklarını devam ettiren
üç mikroorganizma (Bacillus subtilis (N28), Bacillus pumilis (N1) Lactobacillus casei (Nm24) seçilerek taramalı elektron mikroskobu
(SEM) ve RAMAN spektroskopisi ile gözlemlenmiştir. Tuzluluk koşullarında denek bitki olarak Linda (Lycopersicon esculentum)
seçilmiş ve sera koşullarında yetiştirme ortamı olarak her saksıya 1 kg kum ve 0,3 kg turba yosunu; üç doz çinko nanopartikül (0,
20, 40 mg L-1 Zno-Nps), 3 bakteri [Bacillus pumilis (N1), Bacillus subtilis (N28), Lactobacillus casei (Nm24)], karışım formülasyonları
hazırlanarak dört tekrarlı olacak şekilde deneme kurulmuştur. Oluşturulan formülasyon bir dekarlık alan için 100 litre hesabı
temeline dayalı olarak suya karıştırılıp uygulanmıştır. Uygulamaların kuru madde miktarı, bitkinin besin element içeriği üzerine
etkisi (azot (N) potasyum (K), kalsiyum (Ca), magnezyum (Mg), fosfor (P), demir (Fe), bakır (Cu), çinko (Zn), mangan(Mn), bor (B))
içeriği üzerine etkileri değerlendirilmiştir. Uygulamalar sonucunda kuru madde içeriğinin (% 31,2), fosfor içeriği %15,64,
potasyum içeriği % 2,75, kalsiyum içeriğini % 8,2, magnezyum içeriği % 17,19, B. subtilis (N28)+40 ZnNanops uygulama grubu
çinko içeriği %19,01, demir içeriği % 7,75, mangan içeriği % 14,6, B bakır içeriğini % 12,71, B. pumilis bor içeriğini % 23,8, toplam
azot içeriğinin ise yaklaşık 3 kat arttırdığı gözlemlenmiştir. Araştırma sonucuna göre tuz stresi altında bitkilerin fotosentetik tepki
olarak tuz stresinden kurtulma adına karbonhidrat metabolizmasını köke yönledirmesine neden olmuştur. Ürün verim ve verim
unsurlarında meydana gelen kaybın azaltılması yönünde nanoboyutta çinko partikülleri ile Bacillus pumilis (N1), Bacillus subtilis
(N28), Lactobacillus casei (Nm24) kombinasyonu bu tepkinin yönetilmesinde istatsitiksel anlamda önemli katkılar sağlamıştır. Bitki
besin ve iyon dengesinin sağlanmasına katkıları yanında enzimsel etki mekanizması yaratarak bitkinin bu stresini azaltma yönünde
önemli etkileri olmuştur. Özellikle önümüzdeki 20-30 yıllık süreç içerisinde iklim bilimcilerinin ortaya koyduğu seneryolara göre
bitkisel üretimde bu tür sorunların giderek artacağı yönündeki gelişmelere karşı bu yöndeki sorunlara çözüm olabilme yönüyle
oldukça anlamlı bir çalışmadır. Bu çalışmanın tarla koşullarında yapılacak çalışmalar ile kalibre edilmesi durumunda farklı tuz
stresi koşullarına göre mevcut formülasyonların yada ilave gerekli nanobesinlerin verilmesi gerekli olabilmektedir.

Kaynakça

  • Alharby HF, 2016. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi Journal of Biological Sciences 23: 773-781.
  • Bilgin N, Yıldız, N, 2008. Besin kültüründe yetiştirilen (Kaya-F1) domates çeşidinin (Lycopersicon esculentum) artan nacl uygulamalarına toleransı ve tuzluluk stresinin kuru madde miktarı ile bitki mineral madde içeriğine etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 9: 15-21.
  • Bremner JM, 1996. Nitrogen Total. In: Sparks, D.L., Ed., Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5, Soil Sci. Soci. of America, Madison, Wisconsin, 1085-1122.
  • Flores HE, Galston AW, 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiology 69, 701–706.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909–930.
  • Iqbal M, Ashraf M, 2006. Wheat seed priming in relation to salt tolerance: growth, yield and levels of free salicylic acid and polyamines. Annales Botanici Fennici 43, 250–259.
  • Kazan K, 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science 20, 219–229.
  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA, 2016. Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regulation 78: 1-11.
  • Kotuby J, Koenig R, Kitchen B, 1997. Salinity and Plant Tolerance. Utah State Üniversity Extension. AG-SO-03., Utah.plants. Environ. Sci. Technol. 48, 4376e4385.
  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai Y, Braam J, 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis Thaliana. Environmental Toxicology and Chemistry 29, 669–675.
  • Lin D, Xing B, 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution 150, 243–250.
  • Lopez MV, Satti SME, 1996. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress, Plant Science 114, 19-27.
  • Mengel K, Kirkby EA, 2001. Principles of Plant Nutrition. ISBN 0-7923-7150-X (HB) Published by Kluwer Academic Publishers. The Netherlands.
  • Mertens D, 2005a. AOAC official method 922.02. In: Horwitz, W., Latimer, G.W. (Eds.), Plants Preparation of Laboratory Sample. Official Methods of Analysis, 18th ed. AOAC-International Suite, Gaitherburg, MD, USA, (Chapter 3), pp. 1–2. [18].
  • Mertens D, 2005b. AOAC official method 975.03. In: Horwitz, W., Latimer, G.W.(Eds.), Metal in Plants and Pet Foods. Official Methods of Analysis, 18th ed. AOAC-International Suite, Gaitherburg, MD, USA, (Chapter 3), pp. 3– 4.
  • Mosanna R, Khalilvand BE, 2015. Morpho-physiological response of maize (Zea mays L.) to zinc nano-chelate foliar and soil application at different growth stages. Journal on New Biological Reports 4, 46–50.
  • Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamya V, Raja Reddy, K Sreeprasad TS, Sajanlal PR, Pradeep T, 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35, 905–927.
  • Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC, 2013. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing 3, 353–364.
  • Smith W.E, Dent G, 2005. Modern Raman Spectroscopy – A Practical Approach, John Wiley & Sons Ltd, Chichester, s.135-136.
  • Smith, TA, 1985. Polyamines. Annual Review of Plant Physiology 36, 117–143.
  • Soydam S, Aras S, 2013. Relationships among lipid peroxidation, SOD enzyme activity, and SOD gene expression profile in Lycopersicum esculentum L. exposed to cold stress. Genetics and Molecular Research 12, 3220–3229.
  • Subramanian KS, Sharmila RC, 2012. Ball milled nanosized zeolite loaded with zinc sulfate: a putative slow release Zn fertilizer. Int. J. Innov. Hortic. 1, 33–40.
  • Yıldız N, 2012. Bitki Beslemenin Esasları ve Bitkilerde Beslenme Bozukluğu Belirtileri. Eser ofset matbaacılık, Erzurum.
  • Yıldız N, Bircan H, 1994. Araştırma ve Deneme Metodları Atatu rk U ni. Ziraat Fak. Yay. No. 697. Erzurum.
  • Yıldız N, Canbolat M. ve Aydın A, 2000. Influence of increasing NaCl and NaHCO3 on tomato plant grown in hydroculture. Workshop on Enviromental impact of water quality, irrigation practices. Soil type and crop interactions. November 7, 2000. Antalya-Turkey.
  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, GardeaTorresday JL, 2014. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry. 62, 2752–2759.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Tolga Cinisli Bu kişi benim

Nesrin Yıldız

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

APA Cinisli, T., & Yıldız, N. (2019). Domates bitkisinin tuz stresine karşı tepkisinde Nano Zn-Biyo gübre formülasyonlarının etkisi. Toprak Bilimi Ve Bitki Besleme Dergisi, 7(2), 149-157. https://doi.org/10.33409/tbbbd.668898
AMA Cinisli T, Yıldız N. Domates bitkisinin tuz stresine karşı tepkisinde Nano Zn-Biyo gübre formülasyonlarının etkisi. tbbbd. Aralık 2019;7(2):149-157. doi:10.33409/tbbbd.668898
Chicago Cinisli, Tolga, ve Nesrin Yıldız. “Domates Bitkisinin Tuz Stresine karşı Tepkisinde Nano Zn-Biyo gübre formülasyonlarının Etkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi 7, sy. 2 (Aralık 2019): 149-57. https://doi.org/10.33409/tbbbd.668898.
EndNote Cinisli T, Yıldız N (01 Aralık 2019) Domates bitkisinin tuz stresine karşı tepkisinde Nano Zn-Biyo gübre formülasyonlarının etkisi. Toprak Bilimi ve Bitki Besleme Dergisi 7 2 149–157.
IEEE T. Cinisli ve N. Yıldız, “Domates bitkisinin tuz stresine karşı tepkisinde Nano Zn-Biyo gübre formülasyonlarının etkisi”, tbbbd, c. 7, sy. 2, ss. 149–157, 2019, doi: 10.33409/tbbbd.668898.
ISNAD Cinisli, Tolga - Yıldız, Nesrin. “Domates Bitkisinin Tuz Stresine karşı Tepkisinde Nano Zn-Biyo gübre formülasyonlarının Etkisi”. Toprak Bilimi ve Bitki Besleme Dergisi 7/2 (Aralık 2019), 149-157. https://doi.org/10.33409/tbbbd.668898.
JAMA Cinisli T, Yıldız N. Domates bitkisinin tuz stresine karşı tepkisinde Nano Zn-Biyo gübre formülasyonlarının etkisi. tbbbd. 2019;7:149–157.
MLA Cinisli, Tolga ve Nesrin Yıldız. “Domates Bitkisinin Tuz Stresine karşı Tepkisinde Nano Zn-Biyo gübre formülasyonlarının Etkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 7, sy. 2, 2019, ss. 149-57, doi:10.33409/tbbbd.668898.
Vancouver Cinisli T, Yıldız N. Domates bitkisinin tuz stresine karşı tepkisinde Nano Zn-Biyo gübre formülasyonlarının etkisi. tbbbd. 2019;7(2):149-57.