Gen dizilimlerinin sınıflandırılması, hastalıkların ön görülebilmesi veya teşhis edilebilmesinde çok önemli rol oynamaktadır. Bütün gen dizilimi üzerinde etkili bir sınıflandırma yapabilmek mümkün olmadığından sağlıklı bir sınıflandırma yapılabilmesi için gerekli bilgiyi içeren genlerin (özelliklerin) özellik azaltma algoritmaları ile ayıklanması önem taşımaktadır. Bu çalışmada, özellikleri azaltmak için sezgisel arama teknikleri, özellik azaltma yaklaşımları(filter, wrapper, vb.) gibi farklı yöntemler analiz edilerek ön işleme adımının daha etkin bir şekilde gerçekleştirilmesi; bunun sonucunda elde edilen veri kümelerinin LR (Lojistik Regresyon) ve SVM (Destek Vektör Makineleri) gibi güçlü sınıflandırma araçları ile daha etkin şekilde sınıflandırılması hedeflenmiştir. Makine öğrenmesinde güçlü bir sınıflandırıcı olarak kabul edilen LR sınıflandırıcısı, özellik eksiltme yöntemleri ile gen dizilimlerinin sınıflandırılmasında SVM kadar geçerli ve etkin sınıflama aracı haline gelmiştir.
Gen analizi makine öğrenmesi lojistik regresyon özellik azaltma SVM
DNA microarray classification is important to
discovery of differentially expressed genes between
normal and diseased patients are a central research
problem in bioinformatics. All the genes used in the
expression profile are not informative. Further, many
of them are redundant. A pre-processing step in order
to reduce the number of genes by feature selection
and still retaining best class prediction accuracy for the cla1
ssifier is crucial for precise tumor
classification. In this study comparison between class
prediction accuracy of two different classifiers, LR
(Logistic Regression) and SVM (Support Vector
Machines), was carried out using the best genes
select by wrapper and filter technique to use heuristic
search methods. We conclude that LR together with
heuristic search based feature selection is the as
efficient as SVM to the microarray gene prediction
techniques.
Microarray analysis binary classification machine learning logistic regression feature reduction tumor analysis SVM
| Diğer ID | JA37NE27NJ |
|---|---|
| Yazarlar | |
| Yayımlanma Tarihi | 24 Haziran 2016 |
| Yayımlandığı Sayı | Yıl 2015 Cilt: 8 Sayı: 1 |
https://i.creativecommons.org/l/by-nc/4.0Makale Kabulü | |
Çevrimiçi makale yüklemesi yapmak için kullanıcı kayıt/girişini kullanınız. Dergiye gönderilen makalelerin kabul süreci şu aşamalardan oluşmaktadır: 1. Gönderilen her makale ilk aşamada en az iki hakeme gönderilmektedir. 2. Hakem ataması, dergi editörleri tarafından yapılmaktadır. Derginin hakem havuzunda yaklaşık 200 hakem bulunmaktadır ve bu hakemler ilgi alanlarına göre sınıflandırılmıştır. Her hakeme ilgilendiği konuda makale gönderilmektedir. Hakem seçimi menfaat çatışmasına neden olmayacak biçimde yapılmaktadır. 3. Hakemlere gönderilen makalelerde yazar adları kapatılmaktadır. 4. Hakemlere bir makalenin nasıl değerlendirileceği açıklanmaktadır ve aşağıda görülen değerlendirme formunu doldurmaları istenmektedir. 5. İki hakemin olumlu görüş bildirdiği makaleler editörler tarafından benzerlik incelemesinden geçirilir. Makalelerdeki benzerliğin %25’ten küçük olması beklenir. 6. Tüm aşamaları geçmiş olan bir bildiri dil ve sunuş açısından editör tarafından incelenir ve gerekli düzeltme ve iyileştirmeler yapılır. Gerekirse yazarlara durum bildirilir.
|