In this study we predict traffic speed on Istanbul
roads using RTMS (Remote Traffic Microwave
Sensor) speed measurements obtained from the
Istanbul Municipality web site from 327 different
sensor locations. We do speed predictions 5 minutes
to an hour ahead and use SVM (Support Vector
Machine) and kNN (k Nearest Neighbor) methods
for speed prediction. We find out which other
sensors could be used to predict the speed at a
certain sensor location and show that especially for
nearby/correlated sensors, it is possible to get better
results using related sensor measurements in
addition to the sensor being predicted.
Kaynakça
[1] Alpaydin, E., 2004, ``Introduction to Machine Learning'', MIT Press.
[2] Bin, Y., Zhongzhen, Y. Baozhen, Y., 2006, "Bus Arrival Time Prediction Using Support Vector Machines", Journal of Intelligent Transportation Systems, Volume 10, Issue 4 October 2006 , pages 151 – 158.
[3] Burges, C.J.C., 1998, "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Vol. 2, Number 2, p. 121-167.
[4] Chrobok, R., Kaumann, O., Wahle, J., Schreckenberg, M., 2000, “Three Categories of Traffic Data: Historical, Current, and Predictive”, the 9th IFAC Syposium Control in Transportation Sytems, 250-25.
[5] Hobeika, A.G. and Kim, C.K., 1994, "Trafficflow-prediction systems based on upstream traffic", Proceedings of Vehicle Navigation and Information Systems Conference, 31 Aug-2 Sep 1994, 345 – 350.
[6] Kwon, J., Coifman, B., Bickel, P., 2000, ``Day-to-day travel time trends and travel time prediction from loop detector data'', Transportation Research Record, (1554).
[7] Lingras, P., and Mountford, P., 2001, "Time Delay Neural Networks Designed Using Genetic Algorithms for Short Term Inter-City Traffic Forecasting Engineering of Intelligent Systems", 14th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2001, Budapest, Hungary, June 4-7, Proceedings, page 390, 2001.
[8] Mark, C.D., Sadek, A.W., Rizzo, D., 2004,"Predicting experienced travel time with neural networks: a PARAMICS simulation study", Intelligent Transportation Systems. Proceedings. The 7th International IEEE Conference on Volume , Issue , 3-6 Oct. 2004 Page(s): 906 - 911
[9] Park, D., and Ritett, L. R., 1998, “Forecasting Multiple-Period Freeway Link Travel Times Using Modular Neural Networks,” 77th Annual Meeting of the Transportation Research Board, Washington, D.C., January 1998.
[10] Park, D. and Rilett, L. R., 1999, "Forecasting freeway link travel times with a multilayer feedforward neural network", Computer-Aided Civil and Infrastructure Engineering, 14(5), 357–367.
[11] Rice, J., van Zwet, E., 2001, “A simple and effective method for predicting travel times on freeways'', Intelligent Transp. Systems, IEEE Proceedings, 227 -232.
[13] Sun, H., Liu, H., and Ran, B., 2003,“Short Term Traffic Forecasting Using the Local Linear Regression Model”, Transportation Research Record.
[14] W.C.Van Lint, W.C., Hoogendoorn, S.P., and van Zuylen, H.J., 2000, “Robust and adaptive travel time prediction with neural networks,” Proceedings of the 6th annual TRAIL Congress (part 2), December 2000.
[16] Zhang, Z., Rice, J., and Bickel, P., 1999, “Empirical Comparison of Travel Time Estimation Methods”, Report for MOU 353, UCB-ITS-PRR-99- 43, ISSN1055-1425, December 1999
Örüntü Tanıma ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü
Bu çalışmada İstanbul Büyükşehir Belediyesi’nin web sitesininden alınan RTMS (Remote Traffic Microwave Sensor) cihazlarının hız ölçüm değerleri kullanılarak ileriye yönelik trafik hızı tahmin edilmiştir. Örüntü tanıma yöntemi olarak k-En Yakın Komşu (kNN) ve Karar Destek Makinesi (SVM) kullanılmıştır. Bir sensöre ait hız verilerinin değişik zamanlarda alınarak yapılan trafik hızı öngörüsüne ek olarak bu sensöre yakın sensörlerin hız bilgileri alınarak ve yüksek bağıntıya sahip sensörlerin hız bilgileri alınarak hız öngörüsü yapılmıştır. Yapılan testler sonucunda genel olarak SVR metodunun KNN metodundan daha başarılı olduğu görülmüştür. Yakın konumlardaki veya yüksek bağıntılı sensör verisi kullanılarak yapılan tahminlerin ise bir sensör verisi kullanılarak yapılan tahminlerden daha iyi sonuç verdiği görülmüştür.
Kaynakça
[1] Alpaydin, E., 2004, ``Introduction to Machine Learning'', MIT Press.
[2] Bin, Y., Zhongzhen, Y. Baozhen, Y., 2006, "Bus Arrival Time Prediction Using Support Vector Machines", Journal of Intelligent Transportation Systems, Volume 10, Issue 4 October 2006 , pages 151 – 158.
[3] Burges, C.J.C., 1998, "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Vol. 2, Number 2, p. 121-167.
[4] Chrobok, R., Kaumann, O., Wahle, J., Schreckenberg, M., 2000, “Three Categories of Traffic Data: Historical, Current, and Predictive”, the 9th IFAC Syposium Control in Transportation Sytems, 250-25.
[5] Hobeika, A.G. and Kim, C.K., 1994, "Trafficflow-prediction systems based on upstream traffic", Proceedings of Vehicle Navigation and Information Systems Conference, 31 Aug-2 Sep 1994, 345 – 350.
[6] Kwon, J., Coifman, B., Bickel, P., 2000, ``Day-to-day travel time trends and travel time prediction from loop detector data'', Transportation Research Record, (1554).
[7] Lingras, P., and Mountford, P., 2001, "Time Delay Neural Networks Designed Using Genetic Algorithms for Short Term Inter-City Traffic Forecasting Engineering of Intelligent Systems", 14th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2001, Budapest, Hungary, June 4-7, Proceedings, page 390, 2001.
[8] Mark, C.D., Sadek, A.W., Rizzo, D., 2004,"Predicting experienced travel time with neural networks: a PARAMICS simulation study", Intelligent Transportation Systems. Proceedings. The 7th International IEEE Conference on Volume , Issue , 3-6 Oct. 2004 Page(s): 906 - 911
[9] Park, D., and Ritett, L. R., 1998, “Forecasting Multiple-Period Freeway Link Travel Times Using Modular Neural Networks,” 77th Annual Meeting of the Transportation Research Board, Washington, D.C., January 1998.
[10] Park, D. and Rilett, L. R., 1999, "Forecasting freeway link travel times with a multilayer feedforward neural network", Computer-Aided Civil and Infrastructure Engineering, 14(5), 357–367.
[11] Rice, J., van Zwet, E., 2001, “A simple and effective method for predicting travel times on freeways'', Intelligent Transp. Systems, IEEE Proceedings, 227 -232.
[13] Sun, H., Liu, H., and Ran, B., 2003,“Short Term Traffic Forecasting Using the Local Linear Regression Model”, Transportation Research Record.
[14] W.C.Van Lint, W.C., Hoogendoorn, S.P., and van Zuylen, H.J., 2000, “Robust and adaptive travel time prediction with neural networks,” Proceedings of the 6th annual TRAIL Congress (part 2), December 2000.
[16] Zhang, Z., Rice, J., and Bickel, P., 1999, “Empirical Comparison of Travel Time Estimation Methods”, Report for MOU 353, UCB-ITS-PRR-99- 43, ISSN1055-1425, December 1999
Yıldırım, Ü., & Çataltepe, Z. (2016). Örüntü Tanıma ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, 3(1), 21-28.
AMA
Yıldırım Ü, Çataltepe Z. Örüntü Tanıma ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü. TBV-BBMD. Haziran 2016;3(1):21-28.
Chicago
Yıldırım, Ülkem, ve Zehra Çataltepe. “Örüntü Tanıma Ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi 3, sy. 1 (Haziran 2016): 21-28.
EndNote
Yıldırım Ü, Çataltepe Z (01 Haziran 2016) Örüntü Tanıma ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 3 1 21–28.
IEEE
Ü. Yıldırım ve Z. Çataltepe, “Örüntü Tanıma ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü”, TBV-BBMD, c. 3, sy. 1, ss. 21–28, 2016.
ISNAD
Yıldırım, Ülkem - Çataltepe, Zehra. “Örüntü Tanıma Ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 3/1 (Haziran 2016), 21-28.
JAMA
Yıldırım Ü, Çataltepe Z. Örüntü Tanıma ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü. TBV-BBMD. 2016;3:21–28.
MLA
Yıldırım, Ülkem ve Zehra Çataltepe. “Örüntü Tanıma Ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, c. 3, sy. 1, 2016, ss. 21-28.
Vancouver
Yıldırım Ü, Çataltepe Z. Örüntü Tanıma ve Öznitelik Seçme Yöntemleri Kullanarak Kısa Zaman Sonraki Yol Trafik Hız Öngörüsü. TBV-BBMD. 2016;3(1):21-8.
Çevrimiçi makale yüklemesi yapmak için kullanıcı kayıt/girişini kullanınız.
Dergiye gönderilen makalelerin kabul
süreci şu aşamalardan oluşmaktadır:
1.Gönderilen her makale ilk aşamada en az iki hakeme
gönderilmektedir.
2.Hakem ataması, dergi editörleri tarafından
yapılmaktadır. Derginin hakem havuzunda yaklaşık 200 hakem bulunmaktadır ve bu
hakemler ilgi alanlarına göre sınıflandırılmıştır. Her hakeme ilgilendiği
konuda makale gönderilmektedir. Hakem seçimi menfaat çatışmasına neden
olmayacak biçimde yapılmaktadır.
3.Hakemlere gönderilen makalelerde yazar adları
kapatılmaktadır.
4.Hakemlere bir makalenin nasıl değerlendirileceği
açıklanmaktadır ve aşağıda görülen değerlendirme formunu doldurmaları
istenmektedir.
5.İki hakemin olumlu görüş bildirdiği makaleler
editörler tarafından benzerlik incelemesinden geçirilir. Makalelerdeki
benzerliğin %25’ten küçük olması beklenir.
6.Tüm aşamaları geçmiş olan bir bildiri dil ve sunuş
açısından editör tarafından incelenir ve gerekli düzeltme ve iyileştirmeler
yapılır. Gerekirse yazarlara durum bildirilir.
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.