Bu çalışmada, çevrimiçi reklam platformlarında oluşturulan reklam metinlerinin sektöre göre otomatik olarak sınıflandırılması için Çift Yönlü Kodlayıcı Gösterimleri (BERT) modeli kullanılmıştır. Eğitim veri setimiz 44 farklı sektöre ait yaklaşık 101.000 adet, ilgili sektör isimleri ile etiketlenmiş reklam metninden oluşmaktadır. Sınıflandırma başarımının belirli sektörler için düşük olduğu gözlemlenmiştir. Bunun, ilgili eğitim veri setindeki aykırı bazı reklam metinlerinden kaynaklandığı gözlemlenmiştir. Bu sebeple sektör ve reklam metni uygunluğunu otomatik olarak tespit etmek ve veri seti için bir ön işleme gerçekleştirmek amacıyla doğal dil işleme (NLP) alanında güncel bir yöntem olan Sıfır-Atış Öğrenmesi yöntemi kullanılmıştır. Bu ön işleme çalışmasından sonra temizlenen veri seti ile tekrardan eğitilen BERT modelinin sınıflandırma başarımının önemli ölçüde arttığı gözlemlenmiştir.
Dijital Pazarlama Reklam Metni NLP Metin Sınıflandırma BERT Sıfır-Atış Öğrenmesi
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler(Araştırma) |
Yazarlar | |
Yayımlanma Tarihi | 22 Aralık 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 14 Sayı: 2 |
https://i.creativecommons.org/l/by-nc/4.0Makale Kabulü | |
Çevrimiçi makale yüklemesi yapmak için kullanıcı kayıt/girişini kullanınız. Dergiye gönderilen makalelerin kabul süreci şu aşamalardan oluşmaktadır: 1. Gönderilen her makale ilk aşamada en az iki hakeme gönderilmektedir. 2. Hakem ataması, dergi editörleri tarafından yapılmaktadır. Derginin hakem havuzunda yaklaşık 200 hakem bulunmaktadır ve bu hakemler ilgi alanlarına göre sınıflandırılmıştır. Her hakeme ilgilendiği konuda makale gönderilmektedir. Hakem seçimi menfaat çatışmasına neden olmayacak biçimde yapılmaktadır. 3. Hakemlere gönderilen makalelerde yazar adları kapatılmaktadır. 4. Hakemlere bir makalenin nasıl değerlendirileceği açıklanmaktadır ve aşağıda görülen değerlendirme formunu doldurmaları istenmektedir. 5. İki hakemin olumlu görüş bildirdiği makaleler editörler tarafından benzerlik incelemesinden geçirilir. Makalelerdeki benzerliğin %25’ten küçük olması beklenir. 6. Tüm aşamaları geçmiş olan bir bildiri dil ve sunuş açısından editör tarafından incelenir ve gerekli düzeltme ve iyileştirmeler yapılır. Gerekirse yazarlara durum bildirilir.
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır. |