Araştırma Makalesi
BibTex RIS Kaynak Göster

Hayvan Barınakları İçin Düşük Maliyetli IoT Tabanlı Amonyak Gazı Ölçüm Sistemi

Yıl 2024, , 18 - 25, 29.02.2024
https://doi.org/10.35354/tbed.1398982

Öz

Hayvan barınaklarındaki popülasyonun artış göstermesi ortamın hava kalitesini olumsuz etkilemektedir. Bu durum, verimin düşmesine, hayvan ve barınak çalışanlarının sağlığını kaybetmesine neden olabilmektedir. Barınaklardaki hayvan sayısındaki artışla beraber ortamdaki Amonyak (NH3) gazının artışı hava kalitesinin düşmesine sebep olmaktadır. NH3’ ün toksik özelliğinin insanlar ve hayvanlar için bir sağlık tehlikesi oluşturduğu bilinmektedir. Bu sebeple barınak gibi canlıların solunum yaptığı ortamlarda NH3’ ün takibinin yapılması sağlık açısından büyük önem kazanmaktadır. Bu çalışmada, ortamdaki NH3 gazının yoğunluğunu ölçüp, belirlenen eşik değerin üzerine çıkıldığında sesli ve ışıklı ikaz verebilecek, ayrıca belirlenen periyotlarla okuduğu değerleri ekranda gösterip aynı zamanda Thinkspeak Nesnelerin İnterneti (Internet of Things, IoT) platformuna kaydedebilecek portatif bir sistem prototipi tasarlanmıştır. Bu prototip, aynı zamanda ortamın sıcaklık ve nemini takip etmeye olanak sağlamaktadır. Tasarlanan devrede MQ-137 NH3 algılayıcısı, DHT22 ısı ve nem algılayıcısı kullanılmış, bu sensörlerden gelen verileri değerlendirmek üzere Arduino Uno mikro denetleyici kartı tercih edilmiştir. IoT ile kullanımı için ise wifi modülü olarak ESP8266 kullanılmıştır. Günümüzde kullanılmakta olan ölçüm ve takip cihazlarının maliyetleri göz önünde bulundurulursa, tasarlanan prototip küçük ve orta ölçekli hayvan işletmeleri için barınaklarda maliyeti oldukça düşük bir alternatif seçenek olacaktır.

Kaynakça

  • [1] European Food Safety Authority (EFSA). (2009). Scientific Opinion on the overall effects of farming systems on dairy cow welfare and disease. EFSA Journal, 7(7), 1143.
  • [2] Council, F. A. W. (1993). Report on priorities for animal welfare: research and development. FAWC.
  • [3] Ondarza, M. B. (2000). Cow comfort. Erişim: http://www. milkproduction.com/Library/Scientificarticles/Housing/Cow-comfort.
  • [4] Haley, D. B., Rushen, J., & Passillé, A. D. (2000). Behavioural indicators of cow comfort: activity and resting behaviour of dairy cows in two types of housing. Canadian Journal of Animal Science, 80(2), 257-263.
  • [5] Haskell, M. J., Rennie, L. J., Bowell, V. A., Bell, M. J., & Lawrence, A. B. (2006). Housing system, milk production, and zero-grazing effects on lameness and leg injury in dairy cows. Journal of dairy science, 89(11), 4259-4266.
  • [6] Yoder, M. F., & Van Wicklen, G. L. (1988). Respirable aerosol generation by broiler chickens. Transactions of the ASAE, 31(5), 1510-1517.
  • [7] Preller, L. (1995). Respiratory health effects in pig farmers: assessment of exposure and epidemiological studies of risk factors. Wageningen University and Research.
  • [8] Latenser, B. A., & Lucktong, T. A. (2000). Anhydrous ammonia burns: case presentation and literature review. The Journal of burn care & rehabilitation, 21(1), 40-42.
  • [9] Schiffman, S. S., Auvermann, B. W., & Bottcher, R. W. (2006). Health effects of aerial emissions from animal production and waste management systems.
  • [10] Anonim. (2010b). Hayvan Refahı Bilim Kurulu Raporu. Avrupa Birliği Katılım Öncesi Mali Yardım Aracı (IPARD).
  • [11] Kılıç, İ., & Şimşek, E. (2009). Hayvan barınaklarından kaynaklanan gaz emisyonları ve çevresel etkileri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 14(2).
  • [12] Algers, B., Blokhuis, H., Bøtner, A., Broom, D. M., Costa, P., Domingo, M., ... & Wierup, M. (2009). Scientific opinion on the overall effects of farming systems on dairy cow welfare and disease. EFSA Journal, (7).
  • [13] EFSA Panel on Animal Health and Welfare (AHAW). (2012). Scientific Opinion on the use of animal‐based measures to assess welfare of dairy cows. EFSA Journal, 10(1), 2554.
  • [14] Webb, J., Menzi, H., Pain, B. F., Misselbrook, T. H., Dämmgen, U., Hendriks, H., & Döhler, H. (2005). Managing ammonia emissions from livestock production in Europe. Environmental pollution, 135(3), 399-406.
  • [15] Cheng, L., Ye, Z., Cheng, S., & Guo, X. (2021). Agricultural ammonia emissions and its impact on PM2. 5 concentrations in the Beijing–Tianjin–Hebei region from 2000 to 2018. Environmental Pollution, 291, 118162..
  • [16] Wyer, K. E., Kelleghan, D. B., Blanes-Vidal, V., Schauberger, G., & Curran, T. P. (2022). Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. Journal of Environmental Management, 323, 116285.
  • [17] Dinesh, D., Mowshik, A. N., Meyyappan, M., & Kowtham, M. (2022). Analysis of universal gas leak detector of hazardous gases using IOT. Materials Today: Proceedings, 66, 1044-1050.
  • [18] Timmer, B., Olthuis, W., & Van Den Berg, A. (2005). Ammonia sensors and their applications—a review. Sensors and Actuators B: Chemical, 107(2), 666-677.
  • [19] Chigwada, J., Mazunga, F., Nyamhere, C., Mazheke, V., & Taruvinga, N. (2022). Remote poultry management system for small to medium scale producers using IoT. Scientific African, 18, e01398.
  • [20] Bose, R., Roy, S., & Mondal, H. (2022). A novel algorithmic electric power saver strategies for real-time smart poultry farming. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2, 100053.
  • [21] Ji, B., Zheng, W., Gates, R. S., & Green, A. R. (2016). Design and performance evaluation of the upgraded portable monitoring unit for air quality in animal housing. Computers and Electronics in Agriculture, 124, 132-140.
  • [22] Debauche, O., Mahmoudi, S., Mahmoudi, S. A., Manneback, P., Bindelle, J., & Lebeau, F. (2020). Edge computing and artificial intelligence for real-time poultry monitoring. Procedia computer science, 175, 534-541.
  • [23] Ni, J. Q., Erasmus, M., Jones, D. R., & Campbell, D. L. (2023). Effectiveness and characteristics of a new technology to reduce ammonia, carbon dioxide, and particulate matter pollution in poultry production with artificial turf floor. Environmental Technology & Innovation, 29, 102976.
  • [24] Revanth, M., Kumar, K. S., Srinivasan, M., Stonier, A. A., & Vanaja, D. S. (2021, October). Design and Development of an IoT Based Smart Poultry Farm. In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA) (pp. 1-4). IEEE.
  • [25] Vtoryi, V., Vtoryi, S., & Ylyin, R. (2019). Ammonia concentration in cow barn under limited air exchange. In Proc. 18th Int. Sc. Conf.“Engineering for Rural Development (pp. 1593-1598).
  • [26] D'Urso, P. R., Arcidiacono, C., Valenti, F., Janke, D., & Cascone, G. (2023). Measuring ammonia concentrations by an infrared photo-acoustic multi-gas analyser in an open dairy barn: Repetitions planning strategy. Computers and Electronics in Agriculture, 204, 107509.
  • [27] Wang, X., Ndegwa, P. M., Joo, H., Neerackal, G. M., Harrison, J. H., Stöckle, C. O., & Liu, H. (2016). Reliable low-cost devices for monitoring ammonia concentrations and emissions in naturally ventilated dairy barns. Environmental pollution, 208, 571-579.
  • [28] Kwak, D., Lei, Y., & Maric, R. (2019). Ammonia gas sensors: A comprehensive review. Talanta, 204, 713-730.
  • [29] Technical Data Sheet MQ-137 Gas Sensor https://datasheetspdf.com/pdf-file/904648/HANWEIELECTRONICS/MQ-137/1 Erişim Tarihi 21.11.2023
  • [30] Koo, K. Y., Hester, D., & Kim, S. (2019). Time synchronization for wireless sensors using low-cost gps module and arduino. Frontiers in Built Environment, 4, 82.
  • [31] Technical Data Sheet Arduino uno https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf Erişim Tarihi 21.11.2023
  • [32] Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364.
  • [33] Sevil, M., ELALMIŞ, N., Görgün, H., & Aydin, N. (2015). Control of air conditioning with fuzzy logic controller design for smart home systems. Sigma Journal of Engineering and Natural Sciences, 33(3), 439-463.
  • [34] Technical Data Sheet DHT22 sensor https://pdf.direnc.net/upload/dht.pdf Erişim Tarihi 21.11.2023
  • [35] Djajadi, A., & Wijanarko, M. (2016). Ambient environmental quality monitoring using IoT sensor network. Internetworking Indonesia Journal, 8(1), 41-47.
  • [36] Karacı, A., & Erdemir, M. (2017). Arduino ve wifi temelli çok sensörlü robot tasarımı ve denetimi. Bilişim Teknolojileri Dergisi, 10(4), 435-449.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektronik Tasarım Otomosyonu
Bölüm Makaleler
Yazarlar

Gürkan Bilgin 0000-0002-8441-1557

Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 1 Aralık 2023
Kabul Tarihi 26 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bilgin, G. (2024). Hayvan Barınakları İçin Düşük Maliyetli IoT Tabanlı Amonyak Gazı Ölçüm Sistemi. Teknik Bilimler Dergisi, 14(1), 18-25. https://doi.org/10.35354/tbed.1398982