Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Two-Dimensional Honeycomb Metamaterial Structures and Three-Dimensional Honeycomb Metamaterial Structures

Yıl 2026, Cilt: 16 Sayı: 1, 31 - 38, 15.01.2026
https://doi.org/10.35354/tbed.1827906

Öz

Metamaterials have extraordinary properties that are not found in traditional materials and possess a negative Poisson ratio. This means the material contracts transversely under compressive loads and expands transversely under tensile loads. This property is the exact opposite of that in trabitional materials, and thanks to this, mechanical metamaterials can reach extraordinary limits. Metamaterials are frequently used in damping and shock absorption applications. By taking advantage of these properties, metamaterials are utilized in the textile, defense, aviation, geometric design, sports, biomedical, and architectural fields. With the development of additive manufacturing technology, research on metamaterials is increasing. Therefore, the impact of three dimensional metamaterials on research topics is growing day by day. In this study, comparisons of two and three dimensional metamaterials were made. As a result of the numerical studies, it was seen that the elasticity modulus and yield strength of two dimensional metamaterials are higher than those of three dimensional metamaterials.

Kaynakça

  • 3Eksen. (t.y.). Anycubic ABS-like resin 1 kg (Yeşil). 3Eksen. 12 Aralık 2024 tarihinde https://www.3eksen.com/urun/anycubic-abs-like-resin-pro-2-1-kg-beyaz adresinden erişildi.
  • Álvarez-Trejo, A., Cuan-Urquiuzo, E., Bate, D., & Roman-Flores, A., 2023. Mechanical metamaterials with topologies based on curved elements: An overview of design, additive manufacturing and mechanical properties. Materials & Design, 233, 112190.
  • Balan, M. P., Mertens, J. M., & Bahubalendrui, M. V. A. R., 2023. Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review. Materials Today Communications, 34, 105285.
  • Chen, S., Liu, X., Hu, J., Wang, B., Li, M., Wang, L., Zou, Y., Wu, L., 2023. Elastic architected mechanical metamaterials with negative stiffness effect for high energy dissipation and low frequency vibration suppression. Composites Part B, 267, 111053.
  • Chen, Y., Mai, Y.-W., & Ye, L, 2022. Perspectives for multiphase mechanical metamaterials. Materials Science and Engineering R, 153, 100725.
  • Cui, J., Zhang, L., & Gain, A. K., 2023. A novel auxetic unit cell for 3D metamaterials of designated negative Poisson’s ratio. International Journal of Mechanical Sciences, 260, 108614.
  • Dogan, E., Bhusal, A., Cecen, B., & Miri, A. K., 2020. 3D printing metamaterials towards tissue engineering. Applied Materials Today, 20, 100752.
  • Fleisch, M., Thalhamer, A., Schlogl, S., Fuchs, P. F., Pinter, G., Berer, M., 2024. MetamaterialFinder: A software framework for discovering and analyzing mechanical metamaterials based on simple closed curves. Advances in Engineering Software, 192, 103626.
  • Fu, M., Liue, F., & Hu, L., 2018. A novel category of 3D chiral material with negative Poisson’s ratio. Composite Science and Technology, 160, 111-118.
  • Gao, C., Shi, J., Tang, H., Tang, H., Xiao, Z., Bi, Y., Liu, Z., Rao, J. H., 2024. Mechanical properties and energy absorption capabilities of plate-based AlSi10Mg metamaterials produced by laser powder bed fusion. Journal of Materials Research and Technology, 30, 3851-3862.
  • García, C. A., Ortiz, Á. R., Reina, J. M. A., Cano-Moreno, J. D., Gómez, M. G., 2024. Analysis and simulation of the compressive strength of bioinspired lightweight structures manufactured by a stereolithography3D printer. Biomimetics, 9(4), 240.
  • Gonçalves, V. P. D., Vieira, C. M. F., Simonassi, N. T., Lopes, F. P. D., Youssef, G., & Colorado, H. A., 2024. Evaluation of mechanical properties of ABS-like resin for stereolithography versus ABS for fused deposition modeling in three-dimensional printing applications for odontology. Polymer, 16, 2921.
  • Huang, J., Zhang, J., Xu, D., Zhang, S., Tong, H., Xu, N., 2023. From jammed solids to mechanical metamaterials: A brief review. Current Opinion in Solid State and Materials Science, 27, 101053.
  • Jiao, P., 2023. Mechanical energy metamaterials in interstellar travel. Progress in Materials Science, 137, 101132.
  • Masoumi Ravandi, M. R., Dezianian, S., Talati Ahmad, M., Ghoddosian, A., & Azadi, M., 2023. Compressive strength of metamaterial bones fabricated by 3D printing with different porosities in cubic cells. Materials Chemistry and Physics, 299, 127515.
  • Sinha, P., & Mukhopadhyay, T., 2023. Programmable multi-physical mechanics of mechanical metamaterials. Materials Science & Engineering R, 155, 100745.
  • Wang, C., Huang, Z., Chen, Z., & Li, Y., 2023. A novel polar mechanical metamaterial with dual deformation characteristic. International Journal of Mechanical Sciences. Article in press.
  • Wang, T., An, J., He, H., Wen, X., & Xi, X., 2021. A novel 3D impact energy absorption structure with negative Poisson’s ratio and its application in aircraft crashworthiness. Composite Structures, 262, 113663.
  • Wu, W., Hu, W., Qian, G., Liao, H., Xu, X., & Berto, F., (2019. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials and Design, 180, 107950.
  • Wu, L., Xue, J., Tian, X., Liu, T., Li, D., 2023. 3D-printed metamaterials with versatile functionalities. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2, 100091.
  • Yu, H., Wang, H., Wang, X., Luo, J., Lei, H., & Guo, X., 2023. The cylindrical mechanical metamaterial with high-level thermal-mechanical stabilities and high dynamic stiffness. Mechanics of Materials, 186, 104799.
  • Zhang, Z., Zhang, L., Dong, Y., Chen, H., & Guo, Y., 2023. Mechanical properties of negative Poisson’s ratio metamaterial units and honeycomb structures with cosine-like re-entrant structure. Materials Letters, 331, 133451.
  • Zhou, X., Ren, L., Song, Z., Li, G., Zhang, J., Li, B., Wu, Q., Li, W., Ren, L., Liu, Q., 2023. Advances in 3D/4D printing of mechanical metamaterials: From manufacturing to applications. Composites Part B, 254, 110585.

İki Boyutlu Petek Metamalzeme Yapısı ile Üç Boyutlu Petek Metamalzeme Yapıların Karşılaştırılması

Yıl 2026, Cilt: 16 Sayı: 1, 31 - 38, 15.01.2026
https://doi.org/10.35354/tbed.1827906

Öz

Metamalzemeler geleneksel malzemelerde bulunmayan olağanüstü özelliklere ve negatif poisson oranına sahiptir. Bunun anlamı malzemenin basma yükü altındayken enine daralması, çekme yükünde ise enine genişlemesidir. Bu özellik geleneksel malzemelerde tam tersidir ve bu özelliği sayesinde mekanik metamalzemeler olağanüstü sınırlara ulaşabilmektedir. Metamalzemeler sönümleme ve şok emme alanlarında sıklıkla kullanılmaktadır. Bu özelliklerinden yararlanılarak metamalzemeler tekstil, savunma sanayi, havacılık, geometrik tasarım, spor, biyomedikal ve medikal ve mimarlık alanlarında kullanılmaktadır. Gelişen eklemeli imalat teknolojisi ile metamalzeme üzerine yapılan araştırmalar giderek artmaktadır. Dolayısıyla üç boyutlu metamalzemelerin, araştırma konuları üzerine olan etkisi gün geçtikçe artmaktadır. Bu çalışmada iki ve üç boyutlu metamalzemelerin karşılaştırmaları yapılmıştır. Nümerik yapılan çalışmalar sonucunda iki boyutlu metamalzemelerin elastisite modülü ve akma dayanımının üç boyutlu metamalzemelere göre daha yüksek olduğu görülmüştür.

Kaynakça

  • 3Eksen. (t.y.). Anycubic ABS-like resin 1 kg (Yeşil). 3Eksen. 12 Aralık 2024 tarihinde https://www.3eksen.com/urun/anycubic-abs-like-resin-pro-2-1-kg-beyaz adresinden erişildi.
  • Álvarez-Trejo, A., Cuan-Urquiuzo, E., Bate, D., & Roman-Flores, A., 2023. Mechanical metamaterials with topologies based on curved elements: An overview of design, additive manufacturing and mechanical properties. Materials & Design, 233, 112190.
  • Balan, M. P., Mertens, J. M., & Bahubalendrui, M. V. A. R., 2023. Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review. Materials Today Communications, 34, 105285.
  • Chen, S., Liu, X., Hu, J., Wang, B., Li, M., Wang, L., Zou, Y., Wu, L., 2023. Elastic architected mechanical metamaterials with negative stiffness effect for high energy dissipation and low frequency vibration suppression. Composites Part B, 267, 111053.
  • Chen, Y., Mai, Y.-W., & Ye, L, 2022. Perspectives for multiphase mechanical metamaterials. Materials Science and Engineering R, 153, 100725.
  • Cui, J., Zhang, L., & Gain, A. K., 2023. A novel auxetic unit cell for 3D metamaterials of designated negative Poisson’s ratio. International Journal of Mechanical Sciences, 260, 108614.
  • Dogan, E., Bhusal, A., Cecen, B., & Miri, A. K., 2020. 3D printing metamaterials towards tissue engineering. Applied Materials Today, 20, 100752.
  • Fleisch, M., Thalhamer, A., Schlogl, S., Fuchs, P. F., Pinter, G., Berer, M., 2024. MetamaterialFinder: A software framework for discovering and analyzing mechanical metamaterials based on simple closed curves. Advances in Engineering Software, 192, 103626.
  • Fu, M., Liue, F., & Hu, L., 2018. A novel category of 3D chiral material with negative Poisson’s ratio. Composite Science and Technology, 160, 111-118.
  • Gao, C., Shi, J., Tang, H., Tang, H., Xiao, Z., Bi, Y., Liu, Z., Rao, J. H., 2024. Mechanical properties and energy absorption capabilities of plate-based AlSi10Mg metamaterials produced by laser powder bed fusion. Journal of Materials Research and Technology, 30, 3851-3862.
  • García, C. A., Ortiz, Á. R., Reina, J. M. A., Cano-Moreno, J. D., Gómez, M. G., 2024. Analysis and simulation of the compressive strength of bioinspired lightweight structures manufactured by a stereolithography3D printer. Biomimetics, 9(4), 240.
  • Gonçalves, V. P. D., Vieira, C. M. F., Simonassi, N. T., Lopes, F. P. D., Youssef, G., & Colorado, H. A., 2024. Evaluation of mechanical properties of ABS-like resin for stereolithography versus ABS for fused deposition modeling in three-dimensional printing applications for odontology. Polymer, 16, 2921.
  • Huang, J., Zhang, J., Xu, D., Zhang, S., Tong, H., Xu, N., 2023. From jammed solids to mechanical metamaterials: A brief review. Current Opinion in Solid State and Materials Science, 27, 101053.
  • Jiao, P., 2023. Mechanical energy metamaterials in interstellar travel. Progress in Materials Science, 137, 101132.
  • Masoumi Ravandi, M. R., Dezianian, S., Talati Ahmad, M., Ghoddosian, A., & Azadi, M., 2023. Compressive strength of metamaterial bones fabricated by 3D printing with different porosities in cubic cells. Materials Chemistry and Physics, 299, 127515.
  • Sinha, P., & Mukhopadhyay, T., 2023. Programmable multi-physical mechanics of mechanical metamaterials. Materials Science & Engineering R, 155, 100745.
  • Wang, C., Huang, Z., Chen, Z., & Li, Y., 2023. A novel polar mechanical metamaterial with dual deformation characteristic. International Journal of Mechanical Sciences. Article in press.
  • Wang, T., An, J., He, H., Wen, X., & Xi, X., 2021. A novel 3D impact energy absorption structure with negative Poisson’s ratio and its application in aircraft crashworthiness. Composite Structures, 262, 113663.
  • Wu, W., Hu, W., Qian, G., Liao, H., Xu, X., & Berto, F., (2019. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials and Design, 180, 107950.
  • Wu, L., Xue, J., Tian, X., Liu, T., Li, D., 2023. 3D-printed metamaterials with versatile functionalities. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2, 100091.
  • Yu, H., Wang, H., Wang, X., Luo, J., Lei, H., & Guo, X., 2023. The cylindrical mechanical metamaterial with high-level thermal-mechanical stabilities and high dynamic stiffness. Mechanics of Materials, 186, 104799.
  • Zhang, Z., Zhang, L., Dong, Y., Chen, H., & Guo, Y., 2023. Mechanical properties of negative Poisson’s ratio metamaterial units and honeycomb structures with cosine-like re-entrant structure. Materials Letters, 331, 133451.
  • Zhou, X., Ren, L., Song, Z., Li, G., Zhang, J., Li, B., Wu, Q., Li, W., Ren, L., Liu, Q., 2023. Advances in 3D/4D printing of mechanical metamaterials: From manufacturing to applications. Composites Part B, 254, 110585.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katı Mekanik, Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Araştırma Makalesi
Yazarlar

Başar Göçüncü

Ümran Esendemir

Mehmet Kır

Gönderilme Tarihi 21 Kasım 2025
Kabul Tarihi 17 Aralık 2025
Yayımlanma Tarihi 15 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 16 Sayı: 1

Kaynak Göster

APA Göçüncü, B., Esendemir, Ü., & Kır, M. (2026). İki Boyutlu Petek Metamalzeme Yapısı ile Üç Boyutlu Petek Metamalzeme Yapıların Karşılaştırılması. Teknik Bilimler Dergisi, 16(1), 31-38. https://doi.org/10.35354/tbed.1827906