Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğrudan Metal Lazer Sinterleme/Ergitme Yöntemi ile İmal Edilecek Parçanın Mekanik Özelliklerinin Tahmini

Yıl 2017, Cilt: 7 Sayı: 1, 12 - 28, 22.01.2017

Öz

Eklemeli
İmalat (Eİ) Teknolojilerinden biri olan Doğrudan Metal Lazer Sinterleme/Ergitme
(DMLS/E), katmanlar halinde metal tozlarını sererek ve lazer ışını ile
birleştirerek parça imalatını gerçekleştiren bir yöntemdir. Bu yöntemde, imal
edilecek parçanın mekanik özelliklerini etkileyen lazer gücü, tarama hızı,
tarama mesafesi, katman kalınlığı gibi birçok giriş (işlem) parametresi
bulunmaktadır. Belirtilen parametreler donanımın müsaade ettiği ölçüde kontrol
edilmekte ve değerleri ayarlanabilmektedir. Giriş parametreleri doğrudan imal
edilecek parçanın mekanik özelliklerini etkilemektedir. Farklı ihtiyaçlar
doğrultusunda imal edilecek parçada istenen mekanik özellikler, giriş parametre
değerlerinin değiştirilmesi ile ayarlanabilmektedir. En uygun değerde giriş
parametrelerinin seçilmesi ile de çok iyi mekanik özellikler elde
edilebilmektedir. Çalışmada, girilen işlem parametre değerlerine göre imal
edilecek parçanın mekanik özelliklerini tahmin etmek amacıyla bir Bulanık
Mantık modeli oluşturulmuştur. Böylece, mekanik özellikleri tespit etmek için
araştırmacıların makina üzerinde çok sayıda gerçek denemeler yapması gerekmeden
işlem parametrelerinin değerleri belirlenebilecek, zaman ve maliyet açısından
kazanç sağlanmış olacaktır.




Kaynakça

  • Ali, J.M., Hussain, M.A., Tade, M.O., Zhang, J., 2015. Artificial Intelligence techniques applied as estimator in chemical process systems- A literature survey. Expert Systems with Applications, 42, 14, 5915-5931.
  • Barzani, M.M., Zalnezhad, E., Sarhan, A.A.D., Saeed, F., Ramesh, S. 2015. Fuzzy logic based model for predicting surface roughness of machined Al–Si–Cu–Fe die casting alloy using different additives-turning. Measurement, 61, 150-161.
  • Bertol, L.S., Júnior, W.K., Silva, F.P., Aumund-Kopp, C. 2010. Medical design: Direct Metal Laser Sintering of Ti–6Al–4V. Materials and Design, 31, 3982-3988.
  • Bineli, A.R.R., Peres, A.P.G., Jardini, A.L., Filho, R.M. 2011. Direct Metal Laser Sintering (DMLS): Technology for Design and Construction of Microreactors. 6th Brazilian Conference on Manufacturing Engineering, 11-15 April 2011, Caxias do Sul, Brazil.
  • Brezocnik, M., Kovacic, M., Ficko, M. 2004. Prediction of surface roughness with genetic programming, J Mater Process Techno, 157-158, 28-36.
  • Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P. 2013. Influence Of Process Parameters On Surface Roughness of Aluminum Parts Produced by DMLS. Int. J. Adv. Manuf. Technol., 67, 2743-2751.
  • Casalino, G., Campanelli, L., Contuzzi, N., Ludovico, A.D. 2015. Experimental Investigation And Statistical Optimisation Of The Selective Laser Melting Process Of A Maraging Steel. Optics&Laser Technology, 65, 151-158.
  • Catholic University of Leuven (CUL) 1425. http://www.mech.kuleuven.be/pp/facilities/sms2 (Erişim Tarihi: 18.12.2014).
  • Chatterjee, N., Kumar, S., Saha, P., Mishra, P.K., Choudhury, A.R. 2003. An Experimental Design Approach To Selective Laser Sintering Of Low Carbon Steel. Department of Mechanical Engineering, Indian Institute of Technology, India.
  • Das, S. 2003. Physical Aspects of Process Control in Selective Laser Sintering of Metals. Advanced Engineering Materials, 5,10, 701-711.
  • Deckard, C. 1989. Method And Apparatus For Producing Parts By Selective Sintering. US Patent 4,863,538, filed 17 October 1986, published 5 September 1989.
  • Delgado, J., Ciurana, J., Rodríguez, C.A. 2012. Influence Of Process Parameters On Part Quality And Mechanical Properties For DMLS And SLM With Iron-Based Materials. Int. J. Adv. Manuf. Technol., 60, 601-610.
  • Dereli, T., Durmuşoğlu, A., Ulusam, S., Avlanmaz, N. 2010. A fuzzy approach for personnel selection process. Turkish Journal of Fuzzy Systems, 1, 2, 126-140.
  • Erzincanlı, F., Ermurat, M., Comparision Of The Direct Metal Laser Fabrication Technologies. Gebze Institue of Technology. http://www.turkcadcam.net/rapor/otoinsa/comparison-metal-laser-sintering.pdf (Erişim Tarihi: 24.12.2014).
  • Fister, I.-Jr., Yang, X.-S., Fister, I., Brest, J., Fister, D. 2013. A Brief Review of Nature-Inspired Algorithms for Optimization. Elektrotehniski Vestnik, 80, 3, 1-7.
  • Garg, A., Tai, K., Savalani, M.M. 2014. State-of-the-art in empirical modelling of rapid prototyping processes, Rapid Prototyping Journal, 20, 2, 164-178.
  • Gholaminezhad, I., Assimi, H., Jamali, A., Vajari, D.A. 2016. Uncertainty quantification and robust modeling of selective laser melting process using stochastic multi-objective approach. The International Journal of Advanced Manufacturing Technology, 86, 5, 1425-1441.
  • Hossain, A., Hossain, A., Nukman, Y., Hassan, M.A., Harizam, M.Z., Sifullah, A.M., Parandoush, P. 2016. A Fuzzy Logic-Based Prediction Model for Kerf Width in Laser Beam Machining. Materials and Manufacturing Processes, 31, 5, 679-684.
  • Jamal, A., Syahputra, R. 2016. Heat Exchanger Control Based on Artificial Intelligence Approach. International Journal of Applied Engineering Research, 11, 16, 9063-9069.
  • Jia, Q., Gu, D. 2014. Selective Laser Melting Additive Manufacturing Of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties. Journal of Alloys and Compounds, 585, 713-721.
  • Joo, B.D., Jang, J.H., Lee, J.H., Son, Y.M., Moon, Y.H. 2010. Effect of Laser Parameters on Sintered Powder Morphology. J. Mater. Sci. Technol., 26(4), 375-378.
  • Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.-P., 2011. Process Optimization And Microstructural Analysis For Selective Laser Melting Of AlSi10Mg. Catholic University of Leuven, Departement of Mechanical Engineering, Belgium, 484-495. http://utwired.engr.utexas.edu/lff/symposium/proceedingsarchive/pubs/Manuscripts/2011/2011-37-Kempen.pdf (Erişim Tarihi: 12.10.2014).
  • King, D., Tansey, T. 2002. Alternative materials for rapid tooling. Journal of Materials Processing Technology, 121, 313–317.
  • Klocke, F., Wagner, C., Ader, C. 2003. Development Of An Integrated Model For Selective Metal Laser Sintering. Progress In Virtual Manufacturing Systems: Proceedings. 36th CIRP International Seminar on Manufacturing Systems, Saarland University, 03-05 June 2003, Saarbrücken, Germany.
  • Kochan, D., Kai, C.C., Zhaohui, D. 1999. Rapid Prototyping Issues In The 21st Century. Computers in Industry, 39, 3-10.
  • Kruth, J.-P., B. Vandenbroucke, B., Van Vaerenbergh, J., Naert, I. 2005. Rapid Manufacturing of Dental Prostheses by means of Selective Laser Sintering/Melting. Proceedings of the AFPR, 4.
  • Laohaprapanon, A., Jeamwatthanachai, P., Wongcumchang, M., Chantarapanich, N., Chantaweroad, S., Sitthiseripratip, K., Wisutmethangoon, S. 2011. Optimal Scanning Condition of Selective Laser Melting Processing with Stainless Steel 316L Powder. Advanced Materials Research, 341-342, 816-820.
  • Li, R., Liu, J., Shi, Y., Du, M., Xie, Z. 2010. 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting. JMEPEG, 19, 666-671.
  • Morgan, R., Sutcliffe, C.J., O’neill, W. 2004. Density Analysis Of Direct Metal Laser Re-Melted 316L Stainless Steel Cubic Primitives. Journal Of Materials Science, 39, 1195-1205.
  • Neğiş, E. 2014. http://www.turkcadcam.net/rapor/autofab/ (Erişim Tarihi: 09.09.2014).
  • Ning, Y., Fuh, J. Y. H., Wong, Y. S., Loh, H. T. 2004. An intelligent parameter selection system for the direct metal laser sintering process, International Journal of Production Research, 42:1, 183-199.
  • Özel, S., Yalçın, B., Turhan, H., Somunkıran, İ. 2008. Yüzeyi Ferromangan Toz Alaşımıyla Kaplı Dökümlerin Aşınma Karakteristiğinin Bulanık Mantıkla Modellenmesi. Gazi Üniv. Müh. Mim. Fak. Der., 23, 1, 33-39.
  • Parmar, J.G., Makwana, A. 2012. Prediction of surface roughness for end milling process using Artificial Neural Network. International Journal of Modern Engineering Research (IJMER), 2, 3, 1006-1013.
  • Partee, B., Hollister, S.J., Das, S. 2006. Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA® 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. Journal of Manufacturing Science and Engineering (ASME), 128, 531-540.
  • Ramesh, A.N., Kambhampati, C., Monson, J.R.T., Drew, P.J. 2004. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl., 86, 334-338.
  • Rombouts, M. 2006. Selective laser sintering/melting of iron-based powders. Katholieke Univesiteit Leuven, Ph.D thesis, 241p, Leuven.
  • Senthilkumaran, K., Pandey, P.M., Rao, P.V.M. 2009. Influence Of Building Strategies On The Accuracy Of Parts In Selective Laser Sintering. Materials and Design, 30, 2946-2954.
  • Shahin, M.A., 2016. State-of-the-art review of some artificial intelligence applications in pile foundations. Geoscience Frontiers, 7, 1, 33-44.
  • Shellabear, M., Nyrhilä, O. 2004. DMLS – Development History and State of the Art. LANE 2004 conference, Sept., Erlangen, Germany, 21-24.
  • Simchi, A. 2006. Direct Laser Sintering Of Metal Powders: Mechanism, Kinetics And Microstructural Features. Materials Science and Engineering, A428, 1-2, 148-158.
  • Simchi, A., Pohl, H. 2003. Effects Of Laser Sintering Processing Parameters On The Microstructure And Densification Of Iron Powder. Materials and Engineering, A359, 119-128.
  • Sofu, M.M. 2006. Hızlı Direkt İmalatta Kullanılan Seçici Lazer Sinterleme Ve Ergitme Cihazının Gövde Tasarımı Ve İmalatı. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Isparta, 71s.
  • Song, B., Dong, S., Deng, S., Liao, H., Coddet, C. 2014. Microstructure And Tensile Properties Of Iron Parts Fabricated By Selective Laser Melting. Optics & Laser Technology, 56, 451-460.
  • Sun, Y., Moroz, A., Alrbaey, K., 2014. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel. JMEPEG, 23, 518-526.
  • Taşdemir, Ş., Neşeli, S., Sarıtaş, İ., Yaldız, S. 2011. Bulanık Yaklaşım İle Tornalama İşleminde Yüzey Pürüzlülüğünün Belirlenmesi. e-Journal of New World Sciences Academy, 6, 1, Article Number: 1A0136.
  • Taylan, F., Kayacan, M.C. 2011. Genetic Evolutionary Approach for Cutting Forces Prediction in Hard Milling. Zeitschrift Fur Naturforschung Section A-A Journal of Physıcal Sciences, 66a, 675 – 680.
  • The University of Texas at Austin (UT) 1883.http://www.me.utexas.edu/news/2012/0712_sls_history.php#x3dp2 (Erişim Tarihi: 29.10.2014).
  • Tumer, I.Y., Thompson, D.C., Wood, K.I., Crawford, R.H. 1996. Quantification Of Part Surface Quality: Application To Selectıve Laser Sintering. The 1996 World Automation Conference Proceedings, May, Montpellier, France, 731-736.
  • Wang, X.J., Zhang, L.C., Fang, M.H., Sercombe, T.B. 2014. The Effect Of Atmosphere On The Structure And Properties Of A Selective Laser Melted Al–12Si Alloy. Materials Science & Engineering A, 597, 370-375.
  • Wen, S.F., Yan, C.Z., Wei, Q.S., Zhang, L.C., Zhao, X., Zhu, W., Shi, Y.S. 2014. Investigation And Development Of Large-Scale Equipment And High Performance Materials For Powder Bed Laser Fusion Additive Manufacturing, Virtual and Physical Prototyping, 9,4, 213-223.
  • Yang, Yongqiang, Lu, J.-B., Luo, Z.-Y., Wang, D., 2012. Accuracy And Density Optimization İn Directly Fabricating Customized Orthodontic Production By Selective Laser Melting. Rapid Prototyping Journal, 18, 6, 482-489.
  • Yalçın, B., Ucun, İ., Koru, M. 2007. Mermer Kesme Testerelerinde Oluşan Kesme Kuvvetinin Bulanık Mantık (BM) yöntemiyle
  • Modellenmesi. Gazi Üniv. Müh. Mim. Fak. Der., 22, 2, 329-336.
  • Yarkınoğlu, O., 2007. Computer Aided Manufacturing (CAM) Data Generation For Solid Freeform Fabrication. Middle East Technical University, The Graduate School Of Natural And Applied Sciences, Master Thesis, 110p, Ankara.
  • Yasa, E., Kruth, J-P., 2011. Microstructural Investigation Of Selective Laser Melting 316L Stainless Steel Parts Exposed To Laser Re-Melting. Procedia Engineering, 19, 389-395.
  • Yasa, E., Deckers, J., Kruth, J-P. 2011. The Investigation Of The Influence Of Laser Re-Melting On Density, Surface Quality And Microstructure Of Selective Laser Melting Parts. Rapid Prototyping Journal, 17, 5, 312-327.
  • Zadeh, L.A. 1965. Fuzzy Set, Information Control , 8-1, 338-353.

Predicting The Mechanical Properties Of The Part Produced By Direct Metal Laser Sintering/Melting Method

Yıl 2017, Cilt: 7 Sayı: 1, 12 - 28, 22.01.2017

Öz

The
Direct Metal Laser Sintering/Melting (DMLS/M) which is one of the Additive
Manufacturing (AM) technologies, is a method through which direct parts are
manufactured by spreading a layer of metal powder and combining them through
the laser beam. There are lots of input (process) parameters that affect the
mechanical properties of the part to be manufactured by this method such as
laser power, scan speed, hatching distance and layer thickness. These
parameters are controlled and adjusted as long as the hardware allows. The input
parameters affect the mechanical properties of the part to be manufactured
directly. The desired mechanical properties of the part to be manufactured in
line with different requirements can be adjusted by changing the values of
input parameters. In the study, a Fuzzy Logic model has been created allowing
to predict the mechanical properties of the part to be manufactured according
to the process parameter values. Thus, it will be possible to determine the operation
parameter values without requiring many real trials on the machine by the
researchers which means saving in time and money.

Kaynakça

  • Ali, J.M., Hussain, M.A., Tade, M.O., Zhang, J., 2015. Artificial Intelligence techniques applied as estimator in chemical process systems- A literature survey. Expert Systems with Applications, 42, 14, 5915-5931.
  • Barzani, M.M., Zalnezhad, E., Sarhan, A.A.D., Saeed, F., Ramesh, S. 2015. Fuzzy logic based model for predicting surface roughness of machined Al–Si–Cu–Fe die casting alloy using different additives-turning. Measurement, 61, 150-161.
  • Bertol, L.S., Júnior, W.K., Silva, F.P., Aumund-Kopp, C. 2010. Medical design: Direct Metal Laser Sintering of Ti–6Al–4V. Materials and Design, 31, 3982-3988.
  • Bineli, A.R.R., Peres, A.P.G., Jardini, A.L., Filho, R.M. 2011. Direct Metal Laser Sintering (DMLS): Technology for Design and Construction of Microreactors. 6th Brazilian Conference on Manufacturing Engineering, 11-15 April 2011, Caxias do Sul, Brazil.
  • Brezocnik, M., Kovacic, M., Ficko, M. 2004. Prediction of surface roughness with genetic programming, J Mater Process Techno, 157-158, 28-36.
  • Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P. 2013. Influence Of Process Parameters On Surface Roughness of Aluminum Parts Produced by DMLS. Int. J. Adv. Manuf. Technol., 67, 2743-2751.
  • Casalino, G., Campanelli, L., Contuzzi, N., Ludovico, A.D. 2015. Experimental Investigation And Statistical Optimisation Of The Selective Laser Melting Process Of A Maraging Steel. Optics&Laser Technology, 65, 151-158.
  • Catholic University of Leuven (CUL) 1425. http://www.mech.kuleuven.be/pp/facilities/sms2 (Erişim Tarihi: 18.12.2014).
  • Chatterjee, N., Kumar, S., Saha, P., Mishra, P.K., Choudhury, A.R. 2003. An Experimental Design Approach To Selective Laser Sintering Of Low Carbon Steel. Department of Mechanical Engineering, Indian Institute of Technology, India.
  • Das, S. 2003. Physical Aspects of Process Control in Selective Laser Sintering of Metals. Advanced Engineering Materials, 5,10, 701-711.
  • Deckard, C. 1989. Method And Apparatus For Producing Parts By Selective Sintering. US Patent 4,863,538, filed 17 October 1986, published 5 September 1989.
  • Delgado, J., Ciurana, J., Rodríguez, C.A. 2012. Influence Of Process Parameters On Part Quality And Mechanical Properties For DMLS And SLM With Iron-Based Materials. Int. J. Adv. Manuf. Technol., 60, 601-610.
  • Dereli, T., Durmuşoğlu, A., Ulusam, S., Avlanmaz, N. 2010. A fuzzy approach for personnel selection process. Turkish Journal of Fuzzy Systems, 1, 2, 126-140.
  • Erzincanlı, F., Ermurat, M., Comparision Of The Direct Metal Laser Fabrication Technologies. Gebze Institue of Technology. http://www.turkcadcam.net/rapor/otoinsa/comparison-metal-laser-sintering.pdf (Erişim Tarihi: 24.12.2014).
  • Fister, I.-Jr., Yang, X.-S., Fister, I., Brest, J., Fister, D. 2013. A Brief Review of Nature-Inspired Algorithms for Optimization. Elektrotehniski Vestnik, 80, 3, 1-7.
  • Garg, A., Tai, K., Savalani, M.M. 2014. State-of-the-art in empirical modelling of rapid prototyping processes, Rapid Prototyping Journal, 20, 2, 164-178.
  • Gholaminezhad, I., Assimi, H., Jamali, A., Vajari, D.A. 2016. Uncertainty quantification and robust modeling of selective laser melting process using stochastic multi-objective approach. The International Journal of Advanced Manufacturing Technology, 86, 5, 1425-1441.
  • Hossain, A., Hossain, A., Nukman, Y., Hassan, M.A., Harizam, M.Z., Sifullah, A.M., Parandoush, P. 2016. A Fuzzy Logic-Based Prediction Model for Kerf Width in Laser Beam Machining. Materials and Manufacturing Processes, 31, 5, 679-684.
  • Jamal, A., Syahputra, R. 2016. Heat Exchanger Control Based on Artificial Intelligence Approach. International Journal of Applied Engineering Research, 11, 16, 9063-9069.
  • Jia, Q., Gu, D. 2014. Selective Laser Melting Additive Manufacturing Of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties. Journal of Alloys and Compounds, 585, 713-721.
  • Joo, B.D., Jang, J.H., Lee, J.H., Son, Y.M., Moon, Y.H. 2010. Effect of Laser Parameters on Sintered Powder Morphology. J. Mater. Sci. Technol., 26(4), 375-378.
  • Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.-P., 2011. Process Optimization And Microstructural Analysis For Selective Laser Melting Of AlSi10Mg. Catholic University of Leuven, Departement of Mechanical Engineering, Belgium, 484-495. http://utwired.engr.utexas.edu/lff/symposium/proceedingsarchive/pubs/Manuscripts/2011/2011-37-Kempen.pdf (Erişim Tarihi: 12.10.2014).
  • King, D., Tansey, T. 2002. Alternative materials for rapid tooling. Journal of Materials Processing Technology, 121, 313–317.
  • Klocke, F., Wagner, C., Ader, C. 2003. Development Of An Integrated Model For Selective Metal Laser Sintering. Progress In Virtual Manufacturing Systems: Proceedings. 36th CIRP International Seminar on Manufacturing Systems, Saarland University, 03-05 June 2003, Saarbrücken, Germany.
  • Kochan, D., Kai, C.C., Zhaohui, D. 1999. Rapid Prototyping Issues In The 21st Century. Computers in Industry, 39, 3-10.
  • Kruth, J.-P., B. Vandenbroucke, B., Van Vaerenbergh, J., Naert, I. 2005. Rapid Manufacturing of Dental Prostheses by means of Selective Laser Sintering/Melting. Proceedings of the AFPR, 4.
  • Laohaprapanon, A., Jeamwatthanachai, P., Wongcumchang, M., Chantarapanich, N., Chantaweroad, S., Sitthiseripratip, K., Wisutmethangoon, S. 2011. Optimal Scanning Condition of Selective Laser Melting Processing with Stainless Steel 316L Powder. Advanced Materials Research, 341-342, 816-820.
  • Li, R., Liu, J., Shi, Y., Du, M., Xie, Z. 2010. 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting. JMEPEG, 19, 666-671.
  • Morgan, R., Sutcliffe, C.J., O’neill, W. 2004. Density Analysis Of Direct Metal Laser Re-Melted 316L Stainless Steel Cubic Primitives. Journal Of Materials Science, 39, 1195-1205.
  • Neğiş, E. 2014. http://www.turkcadcam.net/rapor/autofab/ (Erişim Tarihi: 09.09.2014).
  • Ning, Y., Fuh, J. Y. H., Wong, Y. S., Loh, H. T. 2004. An intelligent parameter selection system for the direct metal laser sintering process, International Journal of Production Research, 42:1, 183-199.
  • Özel, S., Yalçın, B., Turhan, H., Somunkıran, İ. 2008. Yüzeyi Ferromangan Toz Alaşımıyla Kaplı Dökümlerin Aşınma Karakteristiğinin Bulanık Mantıkla Modellenmesi. Gazi Üniv. Müh. Mim. Fak. Der., 23, 1, 33-39.
  • Parmar, J.G., Makwana, A. 2012. Prediction of surface roughness for end milling process using Artificial Neural Network. International Journal of Modern Engineering Research (IJMER), 2, 3, 1006-1013.
  • Partee, B., Hollister, S.J., Das, S. 2006. Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA® 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. Journal of Manufacturing Science and Engineering (ASME), 128, 531-540.
  • Ramesh, A.N., Kambhampati, C., Monson, J.R.T., Drew, P.J. 2004. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl., 86, 334-338.
  • Rombouts, M. 2006. Selective laser sintering/melting of iron-based powders. Katholieke Univesiteit Leuven, Ph.D thesis, 241p, Leuven.
  • Senthilkumaran, K., Pandey, P.M., Rao, P.V.M. 2009. Influence Of Building Strategies On The Accuracy Of Parts In Selective Laser Sintering. Materials and Design, 30, 2946-2954.
  • Shahin, M.A., 2016. State-of-the-art review of some artificial intelligence applications in pile foundations. Geoscience Frontiers, 7, 1, 33-44.
  • Shellabear, M., Nyrhilä, O. 2004. DMLS – Development History and State of the Art. LANE 2004 conference, Sept., Erlangen, Germany, 21-24.
  • Simchi, A. 2006. Direct Laser Sintering Of Metal Powders: Mechanism, Kinetics And Microstructural Features. Materials Science and Engineering, A428, 1-2, 148-158.
  • Simchi, A., Pohl, H. 2003. Effects Of Laser Sintering Processing Parameters On The Microstructure And Densification Of Iron Powder. Materials and Engineering, A359, 119-128.
  • Sofu, M.M. 2006. Hızlı Direkt İmalatta Kullanılan Seçici Lazer Sinterleme Ve Ergitme Cihazının Gövde Tasarımı Ve İmalatı. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Isparta, 71s.
  • Song, B., Dong, S., Deng, S., Liao, H., Coddet, C. 2014. Microstructure And Tensile Properties Of Iron Parts Fabricated By Selective Laser Melting. Optics & Laser Technology, 56, 451-460.
  • Sun, Y., Moroz, A., Alrbaey, K., 2014. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel. JMEPEG, 23, 518-526.
  • Taşdemir, Ş., Neşeli, S., Sarıtaş, İ., Yaldız, S. 2011. Bulanık Yaklaşım İle Tornalama İşleminde Yüzey Pürüzlülüğünün Belirlenmesi. e-Journal of New World Sciences Academy, 6, 1, Article Number: 1A0136.
  • Taylan, F., Kayacan, M.C. 2011. Genetic Evolutionary Approach for Cutting Forces Prediction in Hard Milling. Zeitschrift Fur Naturforschung Section A-A Journal of Physıcal Sciences, 66a, 675 – 680.
  • The University of Texas at Austin (UT) 1883.http://www.me.utexas.edu/news/2012/0712_sls_history.php#x3dp2 (Erişim Tarihi: 29.10.2014).
  • Tumer, I.Y., Thompson, D.C., Wood, K.I., Crawford, R.H. 1996. Quantification Of Part Surface Quality: Application To Selectıve Laser Sintering. The 1996 World Automation Conference Proceedings, May, Montpellier, France, 731-736.
  • Wang, X.J., Zhang, L.C., Fang, M.H., Sercombe, T.B. 2014. The Effect Of Atmosphere On The Structure And Properties Of A Selective Laser Melted Al–12Si Alloy. Materials Science & Engineering A, 597, 370-375.
  • Wen, S.F., Yan, C.Z., Wei, Q.S., Zhang, L.C., Zhao, X., Zhu, W., Shi, Y.S. 2014. Investigation And Development Of Large-Scale Equipment And High Performance Materials For Powder Bed Laser Fusion Additive Manufacturing, Virtual and Physical Prototyping, 9,4, 213-223.
  • Yang, Yongqiang, Lu, J.-B., Luo, Z.-Y., Wang, D., 2012. Accuracy And Density Optimization İn Directly Fabricating Customized Orthodontic Production By Selective Laser Melting. Rapid Prototyping Journal, 18, 6, 482-489.
  • Yalçın, B., Ucun, İ., Koru, M. 2007. Mermer Kesme Testerelerinde Oluşan Kesme Kuvvetinin Bulanık Mantık (BM) yöntemiyle
  • Modellenmesi. Gazi Üniv. Müh. Mim. Fak. Der., 22, 2, 329-336.
  • Yarkınoğlu, O., 2007. Computer Aided Manufacturing (CAM) Data Generation For Solid Freeform Fabrication. Middle East Technical University, The Graduate School Of Natural And Applied Sciences, Master Thesis, 110p, Ankara.
  • Yasa, E., Kruth, J-P., 2011. Microstructural Investigation Of Selective Laser Melting 316L Stainless Steel Parts Exposed To Laser Re-Melting. Procedia Engineering, 19, 389-395.
  • Yasa, E., Deckers, J., Kruth, J-P. 2011. The Investigation Of The Influence Of Laser Re-Melting On Density, Surface Quality And Microstructure Of Selective Laser Melting Parts. Rapid Prototyping Journal, 17, 5, 312-327.
  • Zadeh, L.A. 1965. Fuzzy Set, Information Control , 8-1, 338-353.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Burhan Duman

M. Cengiz Kayacan

Yayımlanma Tarihi 22 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 1

Kaynak Göster

APA Duman, B., & Kayacan, M. C. (2017). Doğrudan Metal Lazer Sinterleme/Ergitme Yöntemi ile İmal Edilecek Parçanın Mekanik Özelliklerinin Tahmini. Teknik Bilimler Dergisi, 7(1), 12-28.