Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication Techniques for Light Trapping and Capturing Textures in Crystalline Silicon Solar Cells

Yıl 2018, Cilt: 8 Sayı: 3, 10 - 14, 28.11.2018

Öz

Güneş
pilinin performans/maliyet oranını arttırmak için, ışığın emilimi ve yük
taşıyıcıların toplanması sırasında optik ve elektrik kayıplarını azaltan yeni
yaklaşımlar gereklidir. Bu çalışmada silikon yüzeyinin daha iyi bir ışık
yönetimine yönelik çeşitli şekillere odaklandık. Bir güneş pilinin verimliliği,
gelen ışık ışını ve cihazın yüzeyi arasındaki etkileşimin özelliklerine oldukça
bağlıdır. Güneş hücresinin ışık emilimini ve verimliliğini en üst düzeye
çıkarmak için çeşitli ışık tutucu şemalar önerilmiştir. Çeşitli periyodik mikro
ve nano yüzey dokuları oluşturmak için optik litografi, nanoimprint litografi
(NIL), delik maskesi kolloidal litografi (HCL) gibi farklı litografi teknikleri
uyguladık. Önceden tanımlanmış desen transfer işlemi aşamalarından sonar, kuru
plazma aşındırma veya ıslak kimyasal aşındırma teknikleri uygulanmıştır. Çap,
periyot, derinlik gibi yapısal özellikleri değiştirilmiş ve optimize
edilmiştir. Çeşitli desenleme ve aşındırma işlem türleri ile çalışmanın
sonunda, periyodik ve rastgele-tanıtılmış-periyodik desenler, güneş pili üretim
aşamasında başarıyla uygulanmıştır. Üretilen güneş pillerinin performansları
hem optic hem de elektriksel olarak incelenmiştir.

Kaynakça

  • Dimitrov D. Z., Du C. H. (2013) Crystalline silicon solar cells with micro/nano texture”. Appl. Surf. Sci., vol. 266, no. January, 1–4.
  • Shin J. C., Chanda D., Chern W., Yu K. J., Rogers A., Li X. (2012) Experimental study of design parameters in silicon micropillar array solar cells produced by soft lithography and metal-assisted chemical etching. IEEE J. Photovoltaics, vol. 2, no. 2. 129–133.
  • Yeo C. I., Jang S. J., Kwon J. H., Lee Y.T. (2012) Design of submicrometer hole structure for absorption enhancement in thin film crystalline Si solar cells, EUPVSEC. 2425-2427.
  • Menezes J. W., Ferreira J., Santos M. J. L., Cescato L., Brolo A. G. (2010)
  • Han S. E., Chen G. (2010) Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett., vol. 10, no. 3. 1012–1015
  • Adams T. M., Layton R. A. (2010) Introductory MEMS: Fabrication and applications. Springer.Battaglia C. Et al. (2011)
  • Chou S. Y., Krauss P. R., Renstrom P. J. (1996) Nanoimprint lithography,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 14, no. 6. 4129.
  • Schift H., Kristensen A. (2010) Nanoimprint Lithography–Patterning of Resists Using Molding,” Springer Handb. Nanotechnol., 271–312.
  • Du Q. G., Kam C. H., Demir H. V., Yu H. Y., Sun X. W. (2011) “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett., vol. 36, no. 9. 1713.
  • Trompoukis C. (2012) Enhanced absorption in thin crystalline silicon films for solar cells by nanoimprint lithography,” Proc. SPIE, vol. 8438. 84380R.
  • Trompoukis C. (2015) Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi, vol. 212, no. 1. 140–155.
  • Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics. Adv. Funct. Mater., vol. 20, no. 22. 3918–3924
  • Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett., vol. 11. 661–665

Fabrication Techniques for Light Trapping and Capturing Textures in Crystalline Silicon Solar Cells

Yıl 2018, Cilt: 8 Sayı: 3, 10 - 14, 28.11.2018

Öz

In
order to increase the performance/cost ratio of solar cells, new approaches
reducing optical and electrical losses are necessary during the absorption of
the light and collection of charge carriers. In this work we focused on various
textures on silicon surface towards a better light management of the cell
surface. The efficiency of a solar cell strongly depends on the properties of
the interaction between the incoming light beam and the surface of the device.
In order to maximize the absorption and the efficiency of the cell, various
light trapping schemes have been proposed. We have applied different
lithography techniques such as optical lithography, nanoimprint lithography (NIL), hole mask colloidal lithography (HCL) to
generate various periodic micro and nano surface textures. After predefined
pattern transfer process steps, either dry plasma etching or wet chemical
etching techniques were applied. Structural properties of the features like
diameter, pitch size, depth were varied and optimized. With a variety of
texturing and etching process types, at the end of the study, periodic and
random-introduced-periodic patterns were successfully implemented to solar cell
fabrication step. The performances of the solar cells were investigated both
optically and electrically.

Kaynakça

  • Dimitrov D. Z., Du C. H. (2013) Crystalline silicon solar cells with micro/nano texture”. Appl. Surf. Sci., vol. 266, no. January, 1–4.
  • Shin J. C., Chanda D., Chern W., Yu K. J., Rogers A., Li X. (2012) Experimental study of design parameters in silicon micropillar array solar cells produced by soft lithography and metal-assisted chemical etching. IEEE J. Photovoltaics, vol. 2, no. 2. 129–133.
  • Yeo C. I., Jang S. J., Kwon J. H., Lee Y.T. (2012) Design of submicrometer hole structure for absorption enhancement in thin film crystalline Si solar cells, EUPVSEC. 2425-2427.
  • Menezes J. W., Ferreira J., Santos M. J. L., Cescato L., Brolo A. G. (2010)
  • Han S. E., Chen G. (2010) Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett., vol. 10, no. 3. 1012–1015
  • Adams T. M., Layton R. A. (2010) Introductory MEMS: Fabrication and applications. Springer.Battaglia C. Et al. (2011)
  • Chou S. Y., Krauss P. R., Renstrom P. J. (1996) Nanoimprint lithography,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 14, no. 6. 4129.
  • Schift H., Kristensen A. (2010) Nanoimprint Lithography–Patterning of Resists Using Molding,” Springer Handb. Nanotechnol., 271–312.
  • Du Q. G., Kam C. H., Demir H. V., Yu H. Y., Sun X. W. (2011) “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett., vol. 36, no. 9. 1713.
  • Trompoukis C. (2012) Enhanced absorption in thin crystalline silicon films for solar cells by nanoimprint lithography,” Proc. SPIE, vol. 8438. 84380R.
  • Trompoukis C. (2015) Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi, vol. 212, no. 1. 140–155.
  • Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics. Adv. Funct. Mater., vol. 20, no. 22. 3918–3924
  • Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett., vol. 11. 661–665
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Serra Altınoluk 0000-0003-4347-3804

Raşit Turan Bu kişi benim

Yayımlanma Tarihi 28 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 3

Kaynak Göster

APA Altınoluk, S., & Turan, R. (2018). Fabrication Techniques for Light Trapping and Capturing Textures in Crystalline Silicon Solar Cells. Teknik Bilimler Dergisi, 8(3), 10-14.