Yıl 2020, Cilt 10 , Sayı 1, Sayfalar 23 - 30 2020-02-20

Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi
Evaluation in terms of Sustainability of Wood Materials Reinforced with FRP

Şemsettin KILINÇARSLAN [1] , Yasemin ŞİMŞEK TÜRKER [2]


Sürdürülebilir yapı malzemeleri, yaşam döngüleri boyunca minimum düzeyde enerji harcayan, hammaddelerinin elde edilmesi, işlenmesi, kullanımı, bakım-onarımı ve atık oluşumları sırasında çevreye ve insan sağlığına zarar vermeyen malzemelerdir. Ahşap malzeme en yaygın kullanılan yapı malzemeleri arasındadır. Ancak mevcut kaynakların sürdürülebilirliğinin sağlanması için malzemenin servis ömrü boyunca korunması gerekmektedir. Uzun yıllardır ahşap malzeme yapıların inşasında kullanılmaktadır. Ülkemizde tarihi ahşap yapılar zaman içerisinde onarım ve güçlendirmeye ihtiyaç duymaktadır. Geleneksel onarım yöntemleri, ahşap malzemeye zamanla böcek arız olmasına, mantarlaşmaya ve çürüklüğe sebep olmaktadır. Ayrıca bütün zarar görmüş elemanların sökülmesi özellikle maliyet ve işçilik açısından önemli problemler ortaya çıkarabilmektedir. Bu nedenle, yapıda kullanılan ahşap elemanların tamamının değiştirilmesi yerine zarar görmüş elemanların onarılması sürdürülebilirlik açısından daha uygundur. Yapılan bölgesel değişiklik ile birlikte kavela, çivi, blonlama tekniği gibi yeni birleşimler oluşmaktadır. Fiber takviyeli polimerler ile güçlendirme ile zamandan tasarruf sağlanmakla birlikte görsellik açısından da önemli avantajlar sunmaktadır. Bu nedenle fiber takviyeli polimerlerin kullanımı daha sürdürülebilir ve yenilenebilir bir yapı oluşturmaya katkı sağlayacaktır.

Sustainable building materials are materials that consume minimum energy during their life cycles and do not harm the environment and human health during the production, use, maintenance, repair and waste generation of their raw materials. Wood material is one of the most widely used building materials. However, to ensure the sustainability of the available resources, the material must be protected throughout its service life. Wood materials are used in the construction of buildings for many years. Historical wooden structures in our country need repair and strengthening over time. Traditional repair methods cause insect failure, fungus and rot on wood material over time. In addition, the removal of all damaged elements can cause significant problems, especially in terms of cost and labor. Therefore, instead of replacing all the wood elements used in the building, repairing the damaged elements is more suitable for sustainability. With the regional change, new combinations such as dowels, nails, bloning techniques are formed. Fiber reinforced polymers provide significant advantages in terms of visualization while saving time with reinforcement. Therefore, the use of fiber-reinforced polymers will contribute to a more sustainable and renewable structure.

  • [1] Davraz, M., Pehlivanoğlu, H. E., Kilinçarslan, Ş. 2017. Influence of High Temperature on Concrete Produced from Portland Cement with Boron Additives. Acta Physica Polonica A, 132(3), 872-874.
  • [2] González Bravo, C. 2007. Recuperación de la capacidad mecánica en piezas de madera solicitadas a flexión en estructuras tradicionales operando por la cara superior mediante refuerzos y prótesis metálicas. PhD Thesis. E.T.S. of Architecture, Polytechnic University of Madrid, Spain.
  • [3] Theakston, F. H. 1965. A Feasibility Study for Strengthening Timber Beams With Fibreglass. Can Agric Eng, 17.
  • [4] Biblis, E.J. Analysis of Wood–Fiberglass Composite Beams Within and Beyond The Elastic Region. For Prod Journal, 15, 81–8.
  • [5] Spaun, F.D. 1981. Reinforcement of wood with fibreglass. For Prod Journal, 31(4), 26–33.
  • [6]Triantafillou, T., Deskivic, N. 1992. Prestressed FRP Sheets as External Reinforcement of Wood Members. ASCE J Struct Engineering, 118(5), 1270–84.
  • [7]Triantafillou, T. C., Plevris, N. 1992. Strengthening Of RC Beams with Epoxy-Bonded Fibre-Composite Materials. Materials and Structures, 25(4), 201-211.
  • [8] De La Rosa García, P., Escamilla, A. C., García, M. N. G. 2013. Bending Reinforcement of Timber Beams with Composite Carbon Fiber and Basalt Fiber Materials. Composites Part B: Engineering, 55, 528-536.
  • [9] Steiger, R. 2003. Fiber Reinforced Plastics (FRP) in Timber Structures. Wood Department EMPA, Dübendorf, Switzerland, 1-9.
  • [10]Keenan, F.J. 2000. Limit states design of wood structures. Morrison Hershfield Ltd.; 1986.
  • [11] Johns, K.C., Lacroix, S. 2000. Composite Reinforcement of Timber in Bending. Canadian Journal Civil Engineering, 27(5), 899906.
  • [12] Radford, D.W., Van Goethem, D., Gutkowski, R.M., Peterson, M.L. 2002. Composite Repair of Timber Structures. Constr Build Mater, 16, 41725.
  • [13] Buell, T.W., Saadatmanesh, H. 2005. Strengthening Timber Bridge Beams Using Carbon Fiber. J Struct Eng, ASCE, 131(1), 17387.
  • [14] Schober, K.U., Rautenstrauch, K. 2005. Experimental Investigations on Flexural Strengthening of Timber Structures with CFRP. In: Proceedings of the international symposium on bond behaviour of FRP in structures.
  • [15] Mark, R. 1961. Wood-Aluminum Beams Within and Beyond The Elastic Range. Forest Product Journal, 11(10), 47784.
  • [16] Sliker, A. 1962. Reinforced Wood Laminated Beams. Forest Product Journal, 12(1), 916.
  • [17] Hoyle, R.J. 1975. Steel-reinforced wood beam design. Forest Product Journal, 25(4), 1723.
  • [18] Bulleit, W.M., Sandberg, L.B., Woods, G.J. 1989. Steel-Reinforced Glued Laminated Timber. Journal Structure Engineering, ASCE, 115(2), 43344.
  • [19] Gentile, C., Svecova, D., Rizkalla, S.H. 2002. Timber Beams Strengthened with GFRP Bars: Development and Applications. Journal Composite Const, ASCE, 6(1), 1120.
  • [20] Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H., Triantaffillou, T. 2002. Fiber-Reinforced Polymer Composites for Construction: State-Of-The-Art Review, Journal of Composites for Construction, ASCE, 6(2), 73-87.
  • [21] Harries, K.A., Zorn, A., Aidoo, J., Quattlebaum, J. 2006. Deterioration of FRP-to-Concrete Bond Under Fatigue Loading. Adv Structure Engineering, 9(6), 77989.
  • [22] Kim. Y.J., Green, M.F., Fallis, G.J. 2008. Repair of bridge girder damaged by impact loads with prestressed CFRP sheets. Journal Bridge Engineering ASCE, 13(1):1523.
  • [23] Teng, J.G., Chen, J.F., Smith, S.T., Lam, L. 2003. Behavior and Strength of FRP-Strengthened RC Structures: A State-Of-The-Art Review. Struct Build, ICE 156(1), 5162.
  • [24] Harries, K.A., El-Tawil, S. 2008. Review of steel-FRP composite structural systems. In: Proceedings of the 5th international conference on composite construction.
  • [25] Alhayek, H., Svecova, D. 2012. Flexural stiffness and strength of GFRP-reinforced timber beams. J Compos Constr 16(3):245–252. doi:10.1061/(ASCE)CC.1943-5614. 0000261.
  • [26] Borri, A., Corradi, M., Grazini, A. 2005. A Method for Flexural Reinforcement of Old Wood Beams with CFRP Materials. Composites: Part B, 36, 143–53.
  • [27] Blaß, H.J., Romani, M. 2000. Trag- und Verformungsverhalten von Verbundtra¨gern aus Brettschichtholz und faserversta¨rkten Kunststoffen. Forschungsbericht der Versuchsanstalt fu¨r Stahl, Holz und Steine, Abt. Ingenieurholzbau der Universita¨t Karlsruhe (in German).
  • [28] D’Ambrisi, A., Focacci, F., Luciano, R. 2014. Experimental investigation on flexural behavior of timber beams repaired with CFRP plates. Compos Struct 108:720–728. doi:10. 1016/j.compstruct.2013.10.005.[29] Fiorelli, J., Dias, A.A. 2011. Glulam Beams Reinforced with FRP Externally-Bonded: Theoretical and Experimental Evaluation. Mater Struct 44(8), 1431–1440. doi:10.1617/s11527- 011-9708-y 18. Gentile CJ (2000) Flexural strengthening of timber bridge beams using FRP. MSc thesis, University of Manitoba, Winnipeg.
  • [30] Gilfillan, R.J., Gilbert, S.G., Patrick, G.R.H. 2003. The Use Of FRP Composites İn Enhancing The Structural Behaviour of Timber Beams. J Reinf Plast Compos22(15):1373–1388. doi:10.1177/073168403035583.
  • [31] Hernandez, R., Davalos, J.F., Sonti, S.S., Kim, Y., Moody, R.C. 1997. Strength and stiffness of reinforced yellow-poplar glued-laminated beams. Research Paper FPL-RP-554, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison.
  • [32] Jacob, J., Barragan, O.L.G. 2010. Flexural strengthening of glued laminated timber beams with steel and carbon fiber reinforced polymers. MSc thesis, Chalmers University of Technology, Gothenburg.
  • [33] Jankowski, L.J., Jasienko, J., Nowak, T.P. 2010. Experimental assessment of CFRP reinforced wooden beams by 4-point bending tests and photoelastic coating technique. Mater Struct 43(1–2), 141–150. doi:10.1617/s11527-009-9476-0.
  • [34] Johnsson, H., Blanksvard, T., Carolin, A. 2006. Glulam members strengthened by carbon fibre reinforcement. Mater Struct 40(1):47–56. doi:10.1617/s11527-006-9119-7.
  • [35] Kim, Y.J., Hossain, M., Harries, K.A. 2013. CFRP strengthening of timber beams recovered from a 32 year old quonset: element and system level tests. Eng Struct 57:213–221. doi:10.1016/j.engstruct.2013.09.028.
  • [36] Li, Y.F., Xie, Y.M., Tsai, M.J. 2009. Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Constr Build Mater 23(1), 411–422. doi:10. 1016/j.conbuildmat.2007.11.005.
  • [37] Micelli, F., Scialpi, V., La Tegola, A. 2005. Flexural reinforcement of glulam timber beams and joints with carbon fiberreinforced polymer rods. J Compos Constr 9(4):337–347. doi:10.1061/(ASCE)1090-0268(2005)9:4(337).
  • [38] Raftery, G., Harte, A. 2011. Low-Grade Glued Laminated Timber Reinforced with FRP Plate. Compos Part B: Eng. 42(4):724–35.
  • [39] Raftery, G.M., Whelan, C. 2014. Low-Grade Glued Laminated Timber Beams Reinforced Using Improved Arrangements of Bonded-in GFRP Rods. Constr Build Mater 52:209–220. doi:10.1016/j.conbuildmat.2013.11.044.
  • [40] Schober, K.U., Rautenstrauch, K. 2006. Post-Strengthening of Timber Structures with CFRP’s. Mater Struct 40(1), 27–35. doi:10.1617/s11527-006-9128-6.
  • [41] Yusof, A. 2010. Bending behavior of timber beams strengthened using fiber reinforced polymer bars and plates. PhD thesis, Technology University of Malaysia, Skudai.
  • [42] Burdtland, 1987. Report of the World Commission on Environment and Development: Our Common Future. Erişim Tarihi: 1607.2018. file:///C:/Users/Asus/Downloads/our_common_futurebrundtlandreport1987.pdf.
  • [43] Kılınçarslan, Ş., Şimşek, Y., Uygun, E., Akoğlu, M., Cesur, B., Tufan, M. Z., Turan, U. Sürdürülebilir Yapı Malzemeleri Açısından Bina Sertifikasyon Sistemlerinin İncelenmesi. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 3(1), 1-14. [44]SUYAPO.2019.http://benkoltd.com/suyapo/surdurulebilir/surdurulebilirlik.asp. Erişim Tarihi: 18.08.2019.
  • [45] Çelebi, G. 2003. Çevresel söylem ve sürdürülebilir mimarlık için kavramsal bir çerçeve. GÜ Fen Bilimleri Dergisi, 16(1), 205-216.
  • [46] Ferguson, I., La Fontaine, B., Vinden, P., Bren, L., Hateley, R. And Hermesec, B. 1996. Environmental Properties of Timber, Research Paper commissioned by the FWPRDC.
  • [47] Borri, A., Corradi, M., Grazini, A. 2005. A Method for Flexural Reinforcement of Old Wood Beams With CFRP Materials. Compos Part B-Eng 36(2), 143–153. doi:10. 1016/j.compositesb.2004.04.013.
  • [48] Issa, C.A., Kmeid, Z. 2005. Advanced wood engineering: glulam beams. Constr Build Mater 19, 99–106.
  • [49] Plavris, N., Trintafillou, T.C. 1992. FRP Reinforced Wood as Structural Material. Journal Mater Civil Engineering, 4(3), 300–15.
  • [50] Ogawa, H., 1999. Architectural Application Of Carbon Fibers, Development of New Carbon Fiber Reinforced Glulam. Toho R. Co. Ltd., Tokyo, Japan, 1-9.
  • [51] Premrov, M., Dobrila, P., and Bedenik, B.S. 2003. Analysis of Timberframed Walls Coated With CFRP Strips Strengthened Fibre-Plaster Boards. Faculty of Civil Engineering, University of Maribor, Maribor, Slovenia, 1-12.
  • [52] Roberto, L.A., Michael A.P., Sandford T.C. 2004. Fiber Reinforced Polymer Composite–Wood Pile İnterface Characterization By Push-Out Tests. Journal of Composites for Construction, 8 (4), 360-368 .
  • [53] Toros, A., Ulusoy, M., Ergöçmen, B., 1997. Ulusal Çevre Eylem Planı, Nüfus ve Çevre, Devlet Planlama Teşkilatı, Ankara.
  • [54] Yaylı, H., 2012, Çevre Etiği Bağlamında Kalkınma, Çevre ve Nüfus, Süleyman DemirelÜniversitesi Sosyal Bilimler Enstitüsü Dergisi, Yıl:2012/1, Sayı:15, ss:151-169.
  • [55] Ergül, H. 2014. Architectural Conservation and Environment, 136-144, ISEM2014, Adıyaman, TURKEY.
  • [56] Hollaway, .LC., Teng, J.G. 2008. Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP Composites). Woodhead Publishing Ltd.
  • [57] Bank, L.C. 2006. Composites for construction: structural design with FRP Materials. John Wiley Sons.
  • [58] Thelandersson, S., Larsen, H.J.2003. Timber engineering. London: Wiley & Sons.
  • [59] Dinwoodie, J.M. 2000. Timber: Its nature and behaviour. 2nd ed. Taylor and Francis.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-8253-9357
Yazar: Şemsettin KILINÇARSLAN (Sorumlu Yazar)
Kurum: Süleyman Demirel Üniversitesi
Ülke: Turkey


Orcid: 0000-0002-3080-0215
Yazar: Yasemin ŞİMŞEK TÜRKER
Kurum: Süleyman Demirel Üniversitesi
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 20 Şubat 2020

Bibtex @derleme { tbed615101, journal = {Teknik Bilimler Dergisi}, issn = {}, eissn = {2146-2119}, address = {}, publisher = {Isparta Uygulamalı Bilimler Üniversitesi}, year = {2020}, volume = {10}, pages = {23 - 30}, doi = {10.35354/tbed.615101}, title = {Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi}, key = {cite}, author = {KILINÇARSLAN, Şemsettin and ŞİMŞEK TÜRKER, Yasemin} }
APA KILINÇARSLAN, Ş , ŞİMŞEK TÜRKER, Y . (2020). Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi. Teknik Bilimler Dergisi , 10 (1) , 23-30 . DOI: 10.35354/tbed.615101
MLA KILINÇARSLAN, Ş , ŞİMŞEK TÜRKER, Y . "Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi". Teknik Bilimler Dergisi 10 (2020 ): 23-30 <https://dergipark.org.tr/tr/pub/tbed/issue/52592/615101>
Chicago KILINÇARSLAN, Ş , ŞİMŞEK TÜRKER, Y . "Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi". Teknik Bilimler Dergisi 10 (2020 ): 23-30
RIS TY - JOUR T1 - Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi AU - Şemsettin KILINÇARSLAN , Yasemin ŞİMŞEK TÜRKER Y1 - 2020 PY - 2020 N1 - doi: 10.35354/tbed.615101 DO - 10.35354/tbed.615101 T2 - Teknik Bilimler Dergisi JF - Journal JO - JOR SP - 23 EP - 30 VL - 10 IS - 1 SN - -2146-2119 M3 - doi: 10.35354/tbed.615101 UR - https://doi.org/10.35354/tbed.615101 Y2 - 2020 ER -
EndNote %0 Teknik Bilimler Dergisi Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi %A Şemsettin KILINÇARSLAN , Yasemin ŞİMŞEK TÜRKER %T Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi %D 2020 %J Teknik Bilimler Dergisi %P -2146-2119 %V 10 %N 1 %R doi: 10.35354/tbed.615101 %U 10.35354/tbed.615101
ISNAD KILINÇARSLAN, Şemsettin , ŞİMŞEK TÜRKER, Yasemin . "Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi". Teknik Bilimler Dergisi 10 / 1 (Şubat 2020): 23-30 . https://doi.org/10.35354/tbed.615101
AMA KILINÇARSLAN Ş , ŞİMŞEK TÜRKER Y . Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi. Teknik Bilimler Dergisi. 2020; 10(1): 23-30.
Vancouver KILINÇARSLAN Ş , ŞİMŞEK TÜRKER Y . Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi. Teknik Bilimler Dergisi. 2020; 10(1): 30-23.