Araştırma Makalesi
BibTex RIS Kaynak Göster

Stabilization of Clay with Iron Slag

Yıl 2024, Cilt: 14 Sayı: 2, 19 - 28, 09.08.2024
https://doi.org/10.35354/tbed.1476122

Öz

Clay and expansive soils with insufficient bearing capacity and settlement problems are a worldwide problem for engineers. The most common and economical methods are used in soil stabilization with additives used to improve the bearing capacity and durability properties of soils and to minimize swelling problems. Stabilization of soils with different additives such as construction waste, silica fume, fly ash, plastic waste and glass waste is frequently encountered in the literature. Today, increasing environmental pollution poses the problem of controlled storage of these wastes due to damage to nature and disruption of ecological balance. Using these wastes as recycling products contributes to both nature and the solution of some engineering problems.

In this study, experimental research will be carried out on the stabilization of clay soils, improvement of durability properties, and reduction of swelling pressure and potential with soft clay and iron slag obtained from the Burdur- Muğla region. For this purpose, slag-clay mixtures containing slag at the rate of 10, 15, 20% of the dry clay weight were prepared. First of all, the index properties of the clay sample were determined, durability and compression tests were performed, and the swelling pressure and percentage were calculated with the help of an odometer test set. Afterwards, the same experiments were repeated by mixing 10%, 15% and 20% iron slag into the clay samples prepared at proctor density. The results of this experiment were presented in graphs and tables, and it was observed that the moisture content, swelling percentage and swelling pressure values decreased with the use of iron slag as a clay stabilizer. From the finite element analyses, it was determined that the settlement values decreased and the stress patterns changed.

Kaynakça

  • [1] Bi, J., Chian, S.C.J.G., (2020). Modelling of three-phase strength development of ordinary Portland cement- and Portland blast-furnace cement-stabilised clay. Geotechnique. 70 (1), 80–89.
  • [2] Wu, Z., Deng, Y., Cui, Y., et al., (2020). Geological investigation of the settlement behaviour of two highways in Lianyungang region. Eng. Geol. 272, 105648.
  • [3] Musso, G., Azizi, A., Cristina, J., (2020). A microstructure-based elastoplastic model to describe the behaviour of a compacted clayey silt in isotropic and triaxial compression. Can. Geotech. J. 57 (7), 1025–1043.
  • [4] Meng, K., Cui, C.Y., Li, H.J.,( 2020). An Ontology Framework for Pile Integrity Evaluation Based on Analytical Methodology. IEEE Access, p. 99.
  • [5] Shalabi F. I., Asi I. M., Qasrawi H.Y., (2020), Effect of by-product steel slag on the engineering properties of clay soils, Journal of King Saud University – Engineering Sciences (2017) 29, 394–399
  • [6] Zumrawi, M. M. E., & Babikir, A. A.-A. A. (2017). Laboratory Study of Steel Slag Used in Stabilizing Expansive Soil. Asian Engineering Review, 4(1), 1–6. https://doi.org/10.20448/journal.508.2017.41.1.6
  • [7] B.R. Phani Kumar, R.S. Sharma, (2004) Effect of fly ash on engineering properties of expansive soils, J. Geotech. Geoenviron. Eng. 130 (7) 764–767, https:// doi.org/10.1061/(ASCE)1090-0241(2004) 130:7(764).
  • [8] S. Saride, A.J. Puppala, S.R. Chikyala,(2013) Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays, Appl. Clay Sci. 85 34–45, https://doi.org/10.1016/j.clay.2013.09.008.
  • [9] C.H. Signes, J. Garzon-Roca, Fernández P. Martinez, M.E. Garrido de la Torre, Franco R. Insa,(2016) Swelling potential reduction of Spanish argillaceous marlstone facies tap soil through the addition of crumb rubber particles from scrap tyres, Appl. Clay Sci. 132 768–773, https://doi.org/10.1016/ j.clay.2016.07.027.
  • [10] J.S. Yadav, S.K. Tiwari, (2017). A study on the potential utilization of crumb rubber in cement treated soft clay, J. Build. Eng. 9, 177–191, https://doi.org/ 10.1016/j.jobe.2017.01.001.
  • [11] Yoobanpot N., Jamwawang P., Horpibulsuk S., (2017) Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue, Appl. Clay Sci. 141. 146–156, https://doi.org/ 10.1016/j.clay.2017.02.028.
  • [12] R.M. Nizdam, J.M. Kinuthia,(2010). Sustainable soil stabilization with blast furnace slag – a review, Proc. Inst. Civil Eng.-Constr. Mater. 163 157–165.
  • [13] J.M. Manso, V. Ortega-Lopez, J.A. Polanco, J. Setién, (2013) The use of ladle furnace slag in soil stabilization, Constr. Build. Mater. 40 126–134, https://doi.org/ 10.1016/j.conbuildmat.2012.09.079.
  • [14] Y. Yi, L. Gu, S. Liu, (2015) Microstructural and mechanical properties of marine soft clay stabilized by lime – activated ground granulated blast furnace slag, Appl. Clay Sci. 103 71–76, https://doi.org/10.1016/j.clay.2014.11.005.
  • [15] Mozejko C.A., Francisca M.F., (2020), Enhanced mechanical behavior of compacted clayey silts stabilized by reusing steel slag, Construction and Building Materials, 239 117901. https://doi.org/10.1016/j.conbuildmat.2019.117901.
  • [16] Altun A, Yilmaz I, (2002), Study on steel furnace slags with high MgO as additive in Portland cement, Cement and Concrete Research, 32(8), 1247–1249, DOI 10.1016/S0008-8846(02)00763-9.
  • [17] Motz H, Geiseler J, (2001) Products of steel slags an opportunity to save natural resources,Waste Management, 21(3), 285–293, DOI 10.1016/S0956- 053X(00)00102-1.
  • [18] Akinwumi I., (2014). Soil Modification by the Application of Steel Slag, Perıodıca Polytechnıca Cıvıl Engıneerıng, 58/4 (2014) 371–377. https://doi.org/10.3311/PPci.7239.
  • [19] Al-Khafaji Z, Al-Naely H, Al-Najar A (2018) A review applying industrial waste materials in stabilisation of soft soil. Electr J Struct Eng 18(2):16–23
  • [20] Wang, X., Zhang, Z., Song, Z. (2022). Alkali kalıntısı ve çelik cürufu ile stabilize edilmiş deniz yumuşak kilinin mühendislik özellikleri: deneysel bir çalışma ve YSA modeli. Acta Geotech. 17, 5089–5112 (2022). https://doi.org/10.1007/s11440-022-01498-5
  • [21] Cikmit A.A.,, Tsuchida T., Kang G.,, Hashimoto R., Honda H., (2019). Particle-size effect of basic oxygen furnace steel slag in stabilization of dredged marine clay, Soils and Foundations, Volume 59, Issue 5, Pages 1385-1398, ISSN 0038-0806, https://doi.org/10.1016/j.sandf.2019.06.013.
  • [22] C. Shi, J. Qian,(2000) High performance cementing materials from industrial slags a review, Resour. Conserv. Recycl. 3 (2000) 195–207, https://doi.org/10.1016/ S0921-3449(99)00060-9.
  • [23] H. Motz, J. Geiseler, (2001) Products of steel slags an opportunity to save natural resources, Waste Manage. 21 (2001) 285–293, https://doi.org/10.1016/S0956- 053X(00)00102-1.
  • [24] Cıkmit A.A., Tsuchida T., Hashimoto R., Honda H., Kang G., Sogawa K., (2019) Expansion characteristic of steel slag mixed with soft clay, Construction and Building Materials, 227 (2019) 116799,,ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2019.116799.
  • [25] Al-Khashab, M. N., & Thafer, A. H. M. (2008). Treatment of Expansive Clayey Soil with Crushed Limestone. Civil Eng. Dept. College of Eng. Mosul University. Engineering & Technology Journal, 26, 376-386.
  • [26] Chen, M., Zhou, M., & Wu, S. (2007). Optimization of blended mortars using steel slag sand. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(4), 741-744.
  • [27] Abdalqadir Z.K. , Salih N.B., (2020). An Experimental Study on Stabilization of Expansive Soil Using Steel Slag and Crushed Limestone, Sulaimani Journal for Engineering Sciences / Volume 7 - Number 1 – April 2020, https://doi.org/10.17656/sjes.10120
  • [28] Abdalqadir Z.K. , Salih N.B., Salih S. J. H. (2020) . Using Steel Slag for Stabilizing Clayey Soil in Sulaimani City-Iraq” Journal of Engineering, 26(7), pp. 145–157. doi:10.31026/j.eng.2020.07.10.
  • [29] Kumar, A., Saha, S., Chattaraj, R. (2020). Çelik Cüruflu Yumuşak Kil Stabilizasyonu. Recent Developments in Sustainable Infrastructure Lecture Notes in Civil Engineering, vol 75. Springer, Singapore. https://doi.org/10.1007/978-981-15-4577-1_11
  • [30] Shi, J., Wang S., Cao W., Su J., Zhang X.,. (2022). Mechanical Properties and Strengthening Mechanism of Dredged Silty Clay Stabilized by Cement and Steel Slag, Materials 15, no. 11: 3823. https://doi.org/10.3390/ma15113823
  • [31] Kang, X., Li C., Zhang M., Yu X., ve Yongqing Chen. (2024). Çelik Cürufu-Pirinç Kabuğu Külü Katılaştırılmış Yüksek Plastisiteli Kilin Mekanik Özellikleri ve Stabilizasyon Mekanizması. Geotechnical Testing Journal 47/1 : 235–253. https://doi.org/10.1520/GTJ20220294 .
  • [32] ASTM D2487. (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA: ASTM International.
  • [33] Kalay, E., (2010). Sıkıştırılmış Yüksek Plastisiteli Kil Zemin Stabilizasyonunda Pomza, Mermer Tozu Ve Kirecin Kullanılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü İnşşat Mühendsiliği Anabilimdalı, Yüksek Lisans Tezi, 54s.
  • [34] ASTM D4318. (2014). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA: ASTM International.
  • [35] ASTM-D698-12 (2021). Standard practice for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). Book of Standards 04.08,
  • [36] ASTM D4546. (2014) Standard Test Methods for One-Dimensional Swell or Collapse of Soils. West Conshohocken, ASTM International.
  • [37] Schanz, T., Vermeer, P., and Bonier, P. (1999), “Formulation and Verification of the Hardening Soil Model. In Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam.
  • [38] Duncan, J. M. and Chang, C. Y. (1970), "Nonlinear Analysis of Stress And Strain in Soils", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, pp. 1629-1653.
  • [39] Kempfert, H. G., & Gebreselassie, B. (2006), “Constitutive Soil Models and Soil Parameters”, Excavations and Foundations in Soft Soils, 57-116.

Kilin Çelik Cürufu ile Stabilizasyonu

Yıl 2024, Cilt: 14 Sayı: 2, 19 - 28, 09.08.2024
https://doi.org/10.35354/tbed.1476122

Öz

Yetersiz taşıma kapasitesine sahip kil ve şişen zeminler ve oturma sorunları mühendisler için dünya çapında bir sorundur. Zeminlerin taşıma kapasitesini ve dayanıklılık özelliklerini iyileştirmek ve şişme problemlerini en aza indirmek için kullanılan katkı maddeleri ile zemin stabilizasyonunda en yaygın ve ekonomik yöntemler kullanılır. Zeminlerin inşaat atığı, silis dumanı, uçucu kül, plastik atık ve cam atığı gibi farklı katkı maddeleri ile stabilizasyonuna literatürde sıklıkla rastlanmaktadır . Günümüzde artan çevre kirliliği, doğaya zarar vermesi ve ekolojik dengenin bozulması nedeniyle bu atıkların kontrollü depolanması sorununu ortaya çıkarmaktadır. Bu atıkların geri dönüşüm ürünü olarak kullanılması hem doğaya hem de bazı mühendislik problemlerinin çözümüne katkı sağlamaktadır.

Bu çalışmada Burdur - Muğla bölgesinden elde edilen yumuşak kil ve demir cürufu ile killi zeminlerin stabilizasyonu, dayanıklılık özelliklerinin iyileştirilmesi, şişme basıncının ve potansiyelinin azaltılmasına yönelik deneysel araştırmalar yapılacaktır. Bu amaçla kuru kil ağırlığının % 10,15,20' si oranında cüruf içeren cüruf-kil karışımları hazırlanmıştır. Öncelikle kil numunesinin indeks özellikleri belirlenecek, dayanıklılık ve sıkışma testleri yapılacak ve odometre test seti yardımıyla şişme basıncı ve yüzdesi hesaplanmıştır. Sonrasında proktor sıkılığında hazırlanan kil numunelerine %10, %15 ve %20 oranında demir cürufu karıştırılarak aynı deneyler tekrarlanmıştır. Bu deneyin sonuçları grafik ve tablolar halinde sunulamuş ve demir cürufunun kile stabilizatör olarak kullanımıyla nem oranı, şişme yüzdesi, şişme basıncı değerlerinin azaldığı görülmüştür. Yapılan sonlu elemanlar analizlerinden ise oturma değerlerinin azaldığı ve gerilme şekillerinin değiştiği belirlenmiştir.

Kaynakça

  • [1] Bi, J., Chian, S.C.J.G., (2020). Modelling of three-phase strength development of ordinary Portland cement- and Portland blast-furnace cement-stabilised clay. Geotechnique. 70 (1), 80–89.
  • [2] Wu, Z., Deng, Y., Cui, Y., et al., (2020). Geological investigation of the settlement behaviour of two highways in Lianyungang region. Eng. Geol. 272, 105648.
  • [3] Musso, G., Azizi, A., Cristina, J., (2020). A microstructure-based elastoplastic model to describe the behaviour of a compacted clayey silt in isotropic and triaxial compression. Can. Geotech. J. 57 (7), 1025–1043.
  • [4] Meng, K., Cui, C.Y., Li, H.J.,( 2020). An Ontology Framework for Pile Integrity Evaluation Based on Analytical Methodology. IEEE Access, p. 99.
  • [5] Shalabi F. I., Asi I. M., Qasrawi H.Y., (2020), Effect of by-product steel slag on the engineering properties of clay soils, Journal of King Saud University – Engineering Sciences (2017) 29, 394–399
  • [6] Zumrawi, M. M. E., & Babikir, A. A.-A. A. (2017). Laboratory Study of Steel Slag Used in Stabilizing Expansive Soil. Asian Engineering Review, 4(1), 1–6. https://doi.org/10.20448/journal.508.2017.41.1.6
  • [7] B.R. Phani Kumar, R.S. Sharma, (2004) Effect of fly ash on engineering properties of expansive soils, J. Geotech. Geoenviron. Eng. 130 (7) 764–767, https:// doi.org/10.1061/(ASCE)1090-0241(2004) 130:7(764).
  • [8] S. Saride, A.J. Puppala, S.R. Chikyala,(2013) Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays, Appl. Clay Sci. 85 34–45, https://doi.org/10.1016/j.clay.2013.09.008.
  • [9] C.H. Signes, J. Garzon-Roca, Fernández P. Martinez, M.E. Garrido de la Torre, Franco R. Insa,(2016) Swelling potential reduction of Spanish argillaceous marlstone facies tap soil through the addition of crumb rubber particles from scrap tyres, Appl. Clay Sci. 132 768–773, https://doi.org/10.1016/ j.clay.2016.07.027.
  • [10] J.S. Yadav, S.K. Tiwari, (2017). A study on the potential utilization of crumb rubber in cement treated soft clay, J. Build. Eng. 9, 177–191, https://doi.org/ 10.1016/j.jobe.2017.01.001.
  • [11] Yoobanpot N., Jamwawang P., Horpibulsuk S., (2017) Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue, Appl. Clay Sci. 141. 146–156, https://doi.org/ 10.1016/j.clay.2017.02.028.
  • [12] R.M. Nizdam, J.M. Kinuthia,(2010). Sustainable soil stabilization with blast furnace slag – a review, Proc. Inst. Civil Eng.-Constr. Mater. 163 157–165.
  • [13] J.M. Manso, V. Ortega-Lopez, J.A. Polanco, J. Setién, (2013) The use of ladle furnace slag in soil stabilization, Constr. Build. Mater. 40 126–134, https://doi.org/ 10.1016/j.conbuildmat.2012.09.079.
  • [14] Y. Yi, L. Gu, S. Liu, (2015) Microstructural and mechanical properties of marine soft clay stabilized by lime – activated ground granulated blast furnace slag, Appl. Clay Sci. 103 71–76, https://doi.org/10.1016/j.clay.2014.11.005.
  • [15] Mozejko C.A., Francisca M.F., (2020), Enhanced mechanical behavior of compacted clayey silts stabilized by reusing steel slag, Construction and Building Materials, 239 117901. https://doi.org/10.1016/j.conbuildmat.2019.117901.
  • [16] Altun A, Yilmaz I, (2002), Study on steel furnace slags with high MgO as additive in Portland cement, Cement and Concrete Research, 32(8), 1247–1249, DOI 10.1016/S0008-8846(02)00763-9.
  • [17] Motz H, Geiseler J, (2001) Products of steel slags an opportunity to save natural resources,Waste Management, 21(3), 285–293, DOI 10.1016/S0956- 053X(00)00102-1.
  • [18] Akinwumi I., (2014). Soil Modification by the Application of Steel Slag, Perıodıca Polytechnıca Cıvıl Engıneerıng, 58/4 (2014) 371–377. https://doi.org/10.3311/PPci.7239.
  • [19] Al-Khafaji Z, Al-Naely H, Al-Najar A (2018) A review applying industrial waste materials in stabilisation of soft soil. Electr J Struct Eng 18(2):16–23
  • [20] Wang, X., Zhang, Z., Song, Z. (2022). Alkali kalıntısı ve çelik cürufu ile stabilize edilmiş deniz yumuşak kilinin mühendislik özellikleri: deneysel bir çalışma ve YSA modeli. Acta Geotech. 17, 5089–5112 (2022). https://doi.org/10.1007/s11440-022-01498-5
  • [21] Cikmit A.A.,, Tsuchida T., Kang G.,, Hashimoto R., Honda H., (2019). Particle-size effect of basic oxygen furnace steel slag in stabilization of dredged marine clay, Soils and Foundations, Volume 59, Issue 5, Pages 1385-1398, ISSN 0038-0806, https://doi.org/10.1016/j.sandf.2019.06.013.
  • [22] C. Shi, J. Qian,(2000) High performance cementing materials from industrial slags a review, Resour. Conserv. Recycl. 3 (2000) 195–207, https://doi.org/10.1016/ S0921-3449(99)00060-9.
  • [23] H. Motz, J. Geiseler, (2001) Products of steel slags an opportunity to save natural resources, Waste Manage. 21 (2001) 285–293, https://doi.org/10.1016/S0956- 053X(00)00102-1.
  • [24] Cıkmit A.A., Tsuchida T., Hashimoto R., Honda H., Kang G., Sogawa K., (2019) Expansion characteristic of steel slag mixed with soft clay, Construction and Building Materials, 227 (2019) 116799,,ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2019.116799.
  • [25] Al-Khashab, M. N., & Thafer, A. H. M. (2008). Treatment of Expansive Clayey Soil with Crushed Limestone. Civil Eng. Dept. College of Eng. Mosul University. Engineering & Technology Journal, 26, 376-386.
  • [26] Chen, M., Zhou, M., & Wu, S. (2007). Optimization of blended mortars using steel slag sand. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(4), 741-744.
  • [27] Abdalqadir Z.K. , Salih N.B., (2020). An Experimental Study on Stabilization of Expansive Soil Using Steel Slag and Crushed Limestone, Sulaimani Journal for Engineering Sciences / Volume 7 - Number 1 – April 2020, https://doi.org/10.17656/sjes.10120
  • [28] Abdalqadir Z.K. , Salih N.B., Salih S. J. H. (2020) . Using Steel Slag for Stabilizing Clayey Soil in Sulaimani City-Iraq” Journal of Engineering, 26(7), pp. 145–157. doi:10.31026/j.eng.2020.07.10.
  • [29] Kumar, A., Saha, S., Chattaraj, R. (2020). Çelik Cüruflu Yumuşak Kil Stabilizasyonu. Recent Developments in Sustainable Infrastructure Lecture Notes in Civil Engineering, vol 75. Springer, Singapore. https://doi.org/10.1007/978-981-15-4577-1_11
  • [30] Shi, J., Wang S., Cao W., Su J., Zhang X.,. (2022). Mechanical Properties and Strengthening Mechanism of Dredged Silty Clay Stabilized by Cement and Steel Slag, Materials 15, no. 11: 3823. https://doi.org/10.3390/ma15113823
  • [31] Kang, X., Li C., Zhang M., Yu X., ve Yongqing Chen. (2024). Çelik Cürufu-Pirinç Kabuğu Külü Katılaştırılmış Yüksek Plastisiteli Kilin Mekanik Özellikleri ve Stabilizasyon Mekanizması. Geotechnical Testing Journal 47/1 : 235–253. https://doi.org/10.1520/GTJ20220294 .
  • [32] ASTM D2487. (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA: ASTM International.
  • [33] Kalay, E., (2010). Sıkıştırılmış Yüksek Plastisiteli Kil Zemin Stabilizasyonunda Pomza, Mermer Tozu Ve Kirecin Kullanılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü İnşşat Mühendsiliği Anabilimdalı, Yüksek Lisans Tezi, 54s.
  • [34] ASTM D4318. (2014). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA: ASTM International.
  • [35] ASTM-D698-12 (2021). Standard practice for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). Book of Standards 04.08,
  • [36] ASTM D4546. (2014) Standard Test Methods for One-Dimensional Swell or Collapse of Soils. West Conshohocken, ASTM International.
  • [37] Schanz, T., Vermeer, P., and Bonier, P. (1999), “Formulation and Verification of the Hardening Soil Model. In Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam.
  • [38] Duncan, J. M. and Chang, C. Y. (1970), "Nonlinear Analysis of Stress And Strain in Soils", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, pp. 1629-1653.
  • [39] Kempfert, H. G., & Gebreselassie, B. (2006), “Constitutive Soil Models and Soil Parameters”, Excavations and Foundations in Soft Soils, 57-116.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Geoteknik Mühendisliği, İnşaat Mühendisliğinde Zemin Mekaniği
Bölüm Makaleler
Yazarlar

Münire Fındık

Yayımlanma Tarihi 9 Ağustos 2024
Gönderilme Tarihi 30 Nisan 2024
Kabul Tarihi 25 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Fındık, M. (2024). Kilin Çelik Cürufu ile Stabilizasyonu. Teknik Bilimler Dergisi, 14(2), 19-28. https://doi.org/10.35354/tbed.1476122