Araştırma Makalesi
BibTex RIS Kaynak Göster

Environmentally-Friendly Recycled Leather‑Reinforced Composite: Thermal and Acoustic Properties

Yıl 2024, Cilt: 14 Sayı: 2, 29 - 34, 09.08.2024
https://doi.org/10.35354/tbed.1484783

Öz

Increase in energy consumption and environmental pollution are some of the main problems of today. One of the ways to overcome these problems is to increase the use of recycled materials. Heat and sound insulation in buildings can play an important role in saving energy and reducing environmental pollution with composite materials made from recycled leather. This study investigates the possibility of reusing leather scraps. Composite material was produced by cutting leather waste for thermal and sound insulation of buildings into small pieces and pressing them in a mechanical mold using polyvinyl acetate binder. The effect of the thickness of the developed new leather-added composite materials on their thermal and acoustic insulation properties was examined. When the thermal and acoustic properties of the composites were evaluated, it was determined that the PVA/skin thicknesses forming the mixture varied depending on the mean temperature and frequency (Hz). As a result of the measurements, it was seen that the sound at the 3000 Hz frequency, to which the human ear is most sensitive, was absorbed by 61%.

Kaynakça

  • [1] Mrowiec, B. (2018). Plastics in the circular economy (CE). Environmental Protection and Natural Resources, 29(4), 16-19.
  • [2] Choudhary, K., Sangwan, K. S., & Goyal, D. (2019). Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Procedia CIRP, 80, 422-427.
  • [3] Padhye, R., & Nayak, R. (Eds.). (2016). Acoustic textiles (p. 242). Berlin/Heidelberg, Germany: Springer.
  • [4] Lakrafli, H., Tahiri, S., Albizane, A., Bouhria, M., & El Otmani, M. E. (2013). Experimental study of thermal conductivity of leather and carpentry wastes. Construction and Building Materials, 48, 566-574.
  • [5] Senthil, R., Inbasekaran, S., Gobi, N., Das, B. N., & Sastry, T. P. (2015). Utilisation of finished leather wastes for the production of blended fabrics. Clean technologies and environmental policy, 17, 1535-1546.
  • [6] Teklay, A., Gebeyehu, G., Getachew, T., Yaynshet, T., & Sastry, T. P. (2017). Conversion of finished leather waste incorporated with plant fibers into value added consumer products–An effort to minimize solid waste in Ethiopia. Waste management, 68, 45-55.
  • [7] Senthil, R., Sastry, T. P., Saraswathy, G., Das, B. N., & Gobi, N. (2018). Leather insole with acupressure effect: new perspectives. Journal of Polymers and the Environment, 26, 175-182.
  • [8] Li, Q., Wang, Y., Xiao, X., Zhong, R., Liao, J., Guo, J., ... & Shi, B. (2020). Research on X-ray shielding performance of wearable Bi/Ce-natural leather composite materials. Journal of Hazardous Materials, 398, 122943.
  • [9] Tauhiduzzaman, M., Mottalib, M. A., Rahman, M. J., & Kalam, M. A. (2023). Preparation and characterization of composite sheets from solid leather waste with plant fibers: a waste utilization effort. Clean Technologies and Environmental Policy, 1-14.
  • [10] Kılıç, E., Fullana-i-Palmer, P., Fullana, M., Delgado-Aguilar, M., & Puig, R. (2024). Circularity of new composites from recycled high density polyethylene and leather waste for automotive bumpers. Testing performance and environmental impact. Science of The Total Environment, 919, 170413.
  • [11] Lakrafli, H., Tahiri, S., Albizane, A., El Houssaini, S., & Bouhria, M. (2017). Effect of thermal insulation using leather and carpentry wastes on thermal comfort and energy consumption in a residential building. Energy Efficiency, 10(5), 1189-1199.
  • [12] Çeven, E. K., & Günaydin, G. K. (2018). Investigation of moisture management and air permeability properties of fabrics with linen and linen-polyester blend yarns. Fibres & Textiles in Eastern Europe, (4 (130), 39-47.
  • [13] Pu, H., Shu, C., Dai, R., Chen, H., & Shan, Z. (2022). Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo. Construction and Building Materials, 340, 127702.
  • [14] Massoudinejad, M., Amanidaz, N., Santos, R. M., & Bakhshoodeh, R. (2019). Use of municipal, agricultural, industrial, construction and demolition waste in thermal and sound building insulation materials: A review article. Journal of Environmental Health Science and Engineering, 17, 1227-1242.
  • [15] Ghermezgoli, Z. M., Moezzi, M., Yekrang, J., Rafat, S. A., Soltani, P., & Barez, F. (2021). Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool. Journal of Building Engineering, 35, 102060.
  • [16] Thilagavathi, G., Muthukumar, N., Krishnanan, S. N., & Senthilram, T. (2019). Development and characterization of pineapple fibre nonwovens for thermal and sound insulation applications. Journal of Natural Fibers.
  • [17] Chen, Y. X., Wu, F., Yu, Q., & Brouwers, H. J. H. (2020). Bio-based ultra-lightweight concrete applying miscanthus fibers: Acoustic absorption and thermal insulation. Cement and Concrete Composites, 114, 103829.
  • [18] Karimi, F., Soltani, P., Zarrebini, M., & Hassanpour, A. (2022). Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings. Journal of Building Engineering, 50, 104125.
  • [19] Mehrzad, S., Taban, E., Soltani, P., Samaei, S. E., & Khavanin, A. (2022). Sugarcane bagasse waste fibers as novel thermal insulation and sound-absorbing materials for application in sustainable buildings. Building and Environment, 211, 108753.
  • [20] Islam, S., & Bhat, G. (2019). Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of environmental management, 251, 109536.
  • [21] Samanta, K. K., Mustafa, I., Debnath, S., Das, E., Basu, G., & Ghosh, S. K. (2022). Study of thermal insulation performance of layered jute nonwoven: a sustainable material. Journal of Natural Fibers, 19(11), 4249-4262.
  • [22] Ali, M., Alabdulkarem, A., Nuhait, A., Al-Salem, K., Iannace, G., & Almuzaiqer, R. (2022). Characteristics of agro waste fibers as new thermal insulation and sound absorbing materials: hybrid of date palm tree leaves and wheat straw fibers. Journal of Natural Fibers, 19(13), 6576-6594.

Çevre Dostu, Geri Dönüştürülebilir, Deri Takviyeli Kompozit: Isı ve Akustik Özellikleri

Yıl 2024, Cilt: 14 Sayı: 2, 29 - 34, 09.08.2024
https://doi.org/10.35354/tbed.1484783

Öz

Enerji tüketimindeki artış ve çevre kirliliği, günümüzün temel sorunlarından bazılarıdır. Bu sorunların üstesinden gelmenin yolarından biri de geri dönüştürülmüş malzeme kullanımını artırmaktır. Binalarda ısı ve ses yalıtımı, geri dönüştürülmüş deriden yapılan kompozit malzemeler ile enerji tasarrufunda ve çevre kirliliğinin azaltılmasında önemli bir rol oynayabilir. Bu çalışma, deri artıklarının yeniden kullanılma olasılığını araştırmaktadır. Binaların termal ve ses yalıtımına yönelik deri atıklarını küçük parçalar haline getirip polivinil asetat bağlayıcı kullanarak mekanik bir kalıpta preslenmesiyle kompozit malzeme üretimi yapılmıştır. Geliştirilen yeni deri katkılı kompozit malzemelerin kalınlıklarının termal ve akustik izolasyon özelliklerine etkisi incelenmiştir. Kompozitlerin termal ve akustik özellikleri değerlendirildiğinde karışımı oluşturan PVA/deri kalınlıklarının, mean temparature ve frequency (Hz) bağlı olarak değiştiği belirlenmiştir. Ölçümler sonucunda insan kulağının en hassas olduğu 3000 Hz frekanstaki sesin %61 oranında absorblandığı görülmüştür.

Kaynakça

  • [1] Mrowiec, B. (2018). Plastics in the circular economy (CE). Environmental Protection and Natural Resources, 29(4), 16-19.
  • [2] Choudhary, K., Sangwan, K. S., & Goyal, D. (2019). Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Procedia CIRP, 80, 422-427.
  • [3] Padhye, R., & Nayak, R. (Eds.). (2016). Acoustic textiles (p. 242). Berlin/Heidelberg, Germany: Springer.
  • [4] Lakrafli, H., Tahiri, S., Albizane, A., Bouhria, M., & El Otmani, M. E. (2013). Experimental study of thermal conductivity of leather and carpentry wastes. Construction and Building Materials, 48, 566-574.
  • [5] Senthil, R., Inbasekaran, S., Gobi, N., Das, B. N., & Sastry, T. P. (2015). Utilisation of finished leather wastes for the production of blended fabrics. Clean technologies and environmental policy, 17, 1535-1546.
  • [6] Teklay, A., Gebeyehu, G., Getachew, T., Yaynshet, T., & Sastry, T. P. (2017). Conversion of finished leather waste incorporated with plant fibers into value added consumer products–An effort to minimize solid waste in Ethiopia. Waste management, 68, 45-55.
  • [7] Senthil, R., Sastry, T. P., Saraswathy, G., Das, B. N., & Gobi, N. (2018). Leather insole with acupressure effect: new perspectives. Journal of Polymers and the Environment, 26, 175-182.
  • [8] Li, Q., Wang, Y., Xiao, X., Zhong, R., Liao, J., Guo, J., ... & Shi, B. (2020). Research on X-ray shielding performance of wearable Bi/Ce-natural leather composite materials. Journal of Hazardous Materials, 398, 122943.
  • [9] Tauhiduzzaman, M., Mottalib, M. A., Rahman, M. J., & Kalam, M. A. (2023). Preparation and characterization of composite sheets from solid leather waste with plant fibers: a waste utilization effort. Clean Technologies and Environmental Policy, 1-14.
  • [10] Kılıç, E., Fullana-i-Palmer, P., Fullana, M., Delgado-Aguilar, M., & Puig, R. (2024). Circularity of new composites from recycled high density polyethylene and leather waste for automotive bumpers. Testing performance and environmental impact. Science of The Total Environment, 919, 170413.
  • [11] Lakrafli, H., Tahiri, S., Albizane, A., El Houssaini, S., & Bouhria, M. (2017). Effect of thermal insulation using leather and carpentry wastes on thermal comfort and energy consumption in a residential building. Energy Efficiency, 10(5), 1189-1199.
  • [12] Çeven, E. K., & Günaydin, G. K. (2018). Investigation of moisture management and air permeability properties of fabrics with linen and linen-polyester blend yarns. Fibres & Textiles in Eastern Europe, (4 (130), 39-47.
  • [13] Pu, H., Shu, C., Dai, R., Chen, H., & Shan, Z. (2022). Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo. Construction and Building Materials, 340, 127702.
  • [14] Massoudinejad, M., Amanidaz, N., Santos, R. M., & Bakhshoodeh, R. (2019). Use of municipal, agricultural, industrial, construction and demolition waste in thermal and sound building insulation materials: A review article. Journal of Environmental Health Science and Engineering, 17, 1227-1242.
  • [15] Ghermezgoli, Z. M., Moezzi, M., Yekrang, J., Rafat, S. A., Soltani, P., & Barez, F. (2021). Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool. Journal of Building Engineering, 35, 102060.
  • [16] Thilagavathi, G., Muthukumar, N., Krishnanan, S. N., & Senthilram, T. (2019). Development and characterization of pineapple fibre nonwovens for thermal and sound insulation applications. Journal of Natural Fibers.
  • [17] Chen, Y. X., Wu, F., Yu, Q., & Brouwers, H. J. H. (2020). Bio-based ultra-lightweight concrete applying miscanthus fibers: Acoustic absorption and thermal insulation. Cement and Concrete Composites, 114, 103829.
  • [18] Karimi, F., Soltani, P., Zarrebini, M., & Hassanpour, A. (2022). Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings. Journal of Building Engineering, 50, 104125.
  • [19] Mehrzad, S., Taban, E., Soltani, P., Samaei, S. E., & Khavanin, A. (2022). Sugarcane bagasse waste fibers as novel thermal insulation and sound-absorbing materials for application in sustainable buildings. Building and Environment, 211, 108753.
  • [20] Islam, S., & Bhat, G. (2019). Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of environmental management, 251, 109536.
  • [21] Samanta, K. K., Mustafa, I., Debnath, S., Das, E., Basu, G., & Ghosh, S. K. (2022). Study of thermal insulation performance of layered jute nonwoven: a sustainable material. Journal of Natural Fibers, 19(11), 4249-4262.
  • [22] Ali, M., Alabdulkarem, A., Nuhait, A., Al-Salem, K., Iannace, G., & Almuzaiqer, R. (2022). Characteristics of agro waste fibers as new thermal insulation and sound absorbing materials: hybrid of date palm tree leaves and wheat straw fibers. Journal of Natural Fibers, 19(13), 6576-6594.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Murat Kodaloğlu 0000-0001-6644-8068

Feyza Akarslan Kodaloğlu 0000-0002-7855-8616

Yayımlanma Tarihi 9 Ağustos 2024
Gönderilme Tarihi 15 Mayıs 2024
Kabul Tarihi 12 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Kodaloğlu, M., & Akarslan Kodaloğlu, F. (2024). Environmentally-Friendly Recycled Leather‑Reinforced Composite: Thermal and Acoustic Properties. Teknik Bilimler Dergisi, 14(2), 29-34. https://doi.org/10.35354/tbed.1484783