Derleme
BibTex RIS Kaynak Göster

Entomopatojen fungusların bitki gelişimi ve bitkilerde hastalık oluşumu üzerine etkileri

Yıl 2022, , 88 - 102, 05.07.2022
https://doi.org/10.31019/tbmd.928768

Öz

Entomopatojen funguslar, bitki zararlılarına karşı biyolojik savaşta kullanılabilen etmenler olarak bilinmektedirler. Son zamanlarda yapılan araştırmalar, zararlı organizmalara ek olarak bitki patojenlerine karşı da etkili olabildiklerini ortaya koymuştur. Entomopatojen fungusların bitki patojenleri üzerindeki etkileri doğrudan veya dolaylı olabilmektedir. Doğrudan etkileri, üç farklı antagonizm mekanizması ile; I) parazitizm, II) konukçu bitki çevresindeki enerji kaynakları bakımından patojenlerle rekabete girmek, ya da III) patojen gelişimini baskılayan kimyasallar salgılamak şeklindedir. Entomopatojen fungusların patojenler üzerindeki dolaylı etkileri ise, bitkilerle olumlu etkileşimleri yoluyla ortaya çıkmaktadır. Bitkilerle endofitik ilişki kurabilen entomopatojen funguslar, bitki gelişimine olumlu katkı sağlamaları yanında bitki savunmasını uyararak patojenlere karşı duyarlılığı da azaltmaktadır. Bu makalede, entomopatojen fungusların bitki gelişimi ve hastalıkları üzerindeki doğrudan ve dolaylı etkileri ele alınmıştır. Bu konuda artan bilgiler, sürdürülebilir tarım çerçevesinde bitki hastalıklarıyla mücadelede biyolojik etmenlerin ve bunlar arasında da entomopatojen fungusların kullanımının yaygınlaşmasına yardımcı olacaktır. Mevcut literatür ışığında konuyu ele alan makale hem bitki zararlıları, hem de patojenler üzerinde etkili olan biyopestisitlere dikkat çekilmesi bakımından önemlidir.

Kaynakça

  • Acar E., M. Ateş, R. Baydar, Ö. Güven & G. Karaca, 2015. Possible use of entomopathogenic fungi in the control of plant diseases. 5th Entomopathogens and Microbial Conrol Congress, 9-11 September 2015, Ankara-Turkey, s92.
  • Ahmad I., M. del Mar Jiménez-Gasco, D.S. Luthe, S.N. Shakeel & M.E. Barbercheck, 2020. Endophytic Metarhizium robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression. Biological Control, 104167.
  • Askary H., Y. Carriere, R.R. Belanger & J. Brodeur, 1998. Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontrol Science and Technology, 8 (1): 23-32.
  • Askary H. & H. Yarmand, 2007. Development of the entomopathogenic hyphomycete Lecanicillium muscarium (Hyphomycetes: Moniliales) on various hosts. European Journal of Entomology, 104 (1): 67.
  • Ateş M., E. Acar, Y. İstekli, Ö. Güven & G. Karaca, 2015. Effects of entomopathogenic fungi on tomato defense against root rot (Turkey). 5th Entomopathogens and Microbial Conrol Congress, 09-11 September 2015, Ankara-Turkey, s93.
  • Augé R.M., 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11 (1): 3-42.
  • Bamisile B.S., C.K. Dash, K.S. Akutse, R. Keppanan & L. Wang, 2018. Fungal endophytes: beyond herbivore management. Frontiers in microbiology, 9: 544.
  • Baron, N.C., E.C. Rigobelo, & D.C. Zied, 2019. Filamentous fungi in biological control: current status and future perspectives. Chilean Journal of Agricultural Research, 79 (2), 307-315.
  • Barra-Bucarei L., A. France & P. Millas, 2019. Crossing frontiers: Endophytic entomopathogenic fungi for biological control of plant diseases. In: Endophytes for a Growing World, Eds. T.R. Hodkinson, F.M. Doohan, M.J. Saunders, B.R. Murphy, Cambridge University Press, pp. 67-93.
  • Behie S.W., P.M. Zelisko & M.J. Bidochka, 2012. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 336 (6088): 1576-1577.
  • Behie S.W. & M. J. Bidochka, 2014. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl. Environ. Microbiol, 80 (5): 1553-1560.
  • Behie S.W., C.C. Moreira, I. Sementchoukova, L. Barelli, P.M. Zelisko & M.J. Bidochka, 2017. Carbon translocation from a plant to an insect pathogenic endophytic fungus. Nature Communications, 8 (1): 1-5.
  • Benhamou N. & J. Brodeur, 2001. Pre-inoculation of Ri T-DNA transformed cucumber roots with the mycoparasite, Verticillium lecanii, induces host defense reactions against Pythium ultimum infection. Physiological and Molecular Plant Pathology, 58 (3): 133-146.
  • Canassa F., S. Tall, R.A. Moral, I.A. de Lara, I. Delalibera Jr. & N.V. Meyling, 2019. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biological Control, 132: 199-208.
  • Carroll G., 1988. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69 (1), 2-9.
  • Chen M., M. Arato, L. Borghi, E. Nouri & D. Reinhardt, 2018. Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Frontiers in Plant Science, 9: 1270.
  • Choudhary D.K., A. Prakash & B.N. Johri, 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 47 (4): 289-297.
  • Dara S.K., 2013. Entomopathogenic fungus Beauveria bassiana promotes strawberry plant growth and health. E-Journal of Entomology and Biologicals, https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=11624
  • Dara, S.K. & D. Peck, 2016. Impact of Entomopathogenic Fungi and Beneficial Microbes on Strawberry Growth, Health and Yield. E-Journal of Entomology and Biologicals, https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=22709
  • Dara S.K., S.S. Dara, S.S.R. Dara & T. Anderson, 2016. First report of three entomopathogenic fungi offering protection against the plant pathogen, Fusarium oxysporum f. sp. vasinfectum. E-Journal of Entomology and Biologicals, https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=22199
  • Dara S.K., 2019. Non-Entomopathogenic roles of entomopathogenic fungi in promoting plant health and growth. Insects, 10 (9): 277.
  • Dash C.K., B.S. Bamisile, R. Keppanan, M. Qasim, Y. Lin, S.U. Islam & L. Wang, 2018. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microbial Pathogenesis, 125: 385-392.
  • Gómez‐Vidal S., J. Salinas, M. Tena & L.V. Lopez-Llorca, 2009. Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis, 30 (17): 2996- 3005.
  • Hassaan, M.A. & A. El Nemr, 2020. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egyptian Journal of Aquatic Research, 46: 207-220.
  • Jaber L.R. & N.M. Salem, 2014. Endophytic colonization of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Science and Technology, 24 (10): 1096-1109.
  • Jaber L.R., 2015. Grapevine leaf tissue colonization by the fungal entomopathogen Beauveria bassiana. L. and its effect against downy mildew. BioControl, 60 (1): 103-112.
  • Jaber L.R. & J. Enkerli, 2016. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control, 103: 187-195.
  • Kang B.R., J.H. Han, J.J. Kim. & Y.C. Kim, 2018. Dual biocontrol potential of the entomopathogenic fungus, Isaria javanica, for both aphids and plant fungal pathogens. Mycobiology, 46 (4): 440-447.
  • Karthiba L., K. Saveetha, S. Suresh, T. Raguchander, D. Saravanakumar & R. Samiyappan, 2010. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Management Science, 66 (5): 555-564.
  • Koike M., T. Higashio, A. Komori, K. Akiyama, N. Kishimoto, E. Masuda & M. Sugimoto, 2004. Verticillium lecanii (Lecanicillium spp.) as epiphyte and its application to biological control of arthropod pests and diseases. IOBC/WPRS Bullettin, 27 (8): 41-44.
  • Krell V., S. Unger, D. Jakobs-Schoenwandt & A.V. Patel, 2018. Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecology, 34: 43-49.
  • Küçük Ç. & İ. Güler, 2009. Bitki Gelişimini Teşvik Eden Bazı Biyokontrol Mikroorganizmalar. Elektronik Mikrobiyoloji Dergisi TR (Eski adı: OrLab On-Line Mikrobiyoloji Dergisi), 7 (1): 30-42.
  • Lee Y.S., J.H. Han, B.R. Kang & Y.C. Kim, 2019. Dibutyl succinate, produced by an insect pathogenic fungus, Isaria javanica pf185, is a metabolite that controls of aphids and a fungal disease, anthracnose. Pest Management Science, 75 (3): 852-858.
  • Lopez D.C. & G.A. Sword, 2015. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89: 53-60.
  • Mantzoukas S., J. Lagogiannis, D. Mpousia, A. Ntoukas, K. Karmakolia, P.A. Eliopoulos & K. Poulas, 2021. Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine Vitis vinifera. Journal of Fungi, 7: 142.
  • Moloinyane S. & F. Nchu, 2019. The Effects of endophytic Beauveria bassiana inoculation on infestation level of Planococcus ficus, growth and volatile constituents of potted greenhouse grapevine (Vitis vinifera L.). Toxins, 11 (2): 72.
  • Ownley B.H., R.M. Pereira, W.E. Klingeman, N.B. Quigley & B.M. Leckie, 2004. Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. Emerging Concepts in Plant Health Management. Research Signpost. (pp. 255-269).
  • Ownley B.H., M.R. Griffin, W.E. Klingeman, K.D. Gwinn, J.K. Moulton & R.M. Pereira, 2008. Beauveria bassiana: endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98 (3): 267-270.
  • Ownley B.H., K.D. Gwinn & F.E. Vega, 2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 55 (1): 113-128.
  • Pérez L.I., P.E. Gundel, C.M. Ghersa & M. Omacini, 2013. Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecology, 6 (5): 379-386.
  • Picardal J.P., E.D. Tundag, M.T. Picardal & G. Goc-ong, 2019. Antagonistic Activity of Metarhizium anisopliae (Metschnikoff) Against Phytopathogenic Fusarium oxysporum f. sp. cubense (Schlecht.) as a Biological Control. CNU Journal of Higher Education, 13 (1): 25-33.
  • Pineda A., S.J. Zheng, J.J. Van Loon, C.M. Pieterse & M. Dicke, 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 15 (9): 507-514.
  • Pineda A., I. Kaplan & T.M. Bezemer, 2017. Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science, 22 (9): 770-778.
  • Raad M., T.R. Glare, H.L. Brochero, C. Müller & M. Rostás, 2019. Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Frontiers in Microbiology, 10: 615.
  • Raya-Díaz S., A.R. Sanchez-Rodriguez, J.M. Segura-Fernández, M.D.C. del Campillo & E. Quesada-Moraga, 2017. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PloSone, 12 (10).
  • Rivas-Franco, F., J.G. Hampton, M.E. Morán-Diez, J. Narciso, M. Rostás, P. Wessman & T.R. Glare, 2019. Effect of coating maize seed with entomopathogenic fungi on plant growth and resistance against Fusarium graminearum and Costelytra giveni. Biocontrol Science and Technology, 29 (9): 877-900.
  • Russo M.L., S.A. Pelizza, M.F. Vianna, N. Allegrucci, M.N. Cabello, A.V. Toledo & A.C. Scorsetti, 2019. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. Journal of King Saud University-Science, 31 (4): 728-736.
  • Sasan R.K. & M.J. Bidochka, 2013. Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Canadian Journal of Plant Pathology, 35 (3): 288-293.
  • Saikkonen K., P. Wäli, M. Helander & S. H. Faeth, 2004. Evolution of endophyte–plant symbioses. Trends in Plant Science, 9 (6): 275-280.
  • Senthilraja G., T. Anand, J.S. Kennedy, T. Raguchander & R. Samiyappan, 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiological and Molecular Plant Pathology, 82: 10-19.
  • Sharma P., 2011. Complexity of' Trichoderma-Fusarium interaction and manifestation of biological control. Australian Journal of Crop Science, 5 (8): 1027.
  • Sheroze A., A. Rashid, A.S. Shakir & S.M. Khan, 2003. Effect of bio-control agents on leaf rust of wheat and influence of different temperature and humidity levels on their colony growth. International Journal of Agriculture & Biology, 5 (1): 83-85.
  • Şentürk Ş. & O. Abacı-Günyar, 2019. Fungal Biyokontrol Ajanları ve Metabolitleri. Mantar Dergisi, 10 (1): 70-83.
  • Tall S. & N.V. Meyling, 2018. Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microbial Ecology, 76 (4): 1002-1008.
  • Tozlu E., 2016. Bazı bakteriyel biyokontrol ajanlar ile havuç acı çürüklük hastalığı (Geotrichum candidum Link)’nın biyolojik mücadelesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 47 (1): 1-9.
  • Vandermeer J., I. Perfecto & H. Liere, 2009. Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathology, 58 (4): 636-641.

The effects of entomopathogenic fungi on plant growth and occurrence of disease on plants

Yıl 2022, , 88 - 102, 05.07.2022
https://doi.org/10.31019/tbmd.928768

Öz

Entomopathogenic fungi are used as biocontrol agents against plant pests. However, recent studies showed that they could also be effective in controlling plant pathogens, either directly or indirectly. Direct effects are related to three mechanisms of antagonism; I) parasitism, II) competition for energy sources around the host plant, and III) production of metabolites that suppress pathogen growth. In addition, they indirectly affect pathogens via their positive interactions with plants. Entomopathogenic fungi in endophytic relationships with plants may decrease the susceptibility of plants to pathogens by facilitating their growth and inducing their defense mechanisms. In this review, the direct and indirect effects of entomopathogenic fungi on plant growth and disease occurrence on plants are discussed. Increased knowledge on this subject can contribute to the use of biocontrol agents becoming more widespread, particularly entomopathogenic fungi, for the control of plant diseases. This review also discusses the subject in the context of current literature because it is important to draw attention to the use of biopesticides, not only against pests, but also against plant pathogens.

Kaynakça

  • Acar E., M. Ateş, R. Baydar, Ö. Güven & G. Karaca, 2015. Possible use of entomopathogenic fungi in the control of plant diseases. 5th Entomopathogens and Microbial Conrol Congress, 9-11 September 2015, Ankara-Turkey, s92.
  • Ahmad I., M. del Mar Jiménez-Gasco, D.S. Luthe, S.N. Shakeel & M.E. Barbercheck, 2020. Endophytic Metarhizium robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression. Biological Control, 104167.
  • Askary H., Y. Carriere, R.R. Belanger & J. Brodeur, 1998. Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontrol Science and Technology, 8 (1): 23-32.
  • Askary H. & H. Yarmand, 2007. Development of the entomopathogenic hyphomycete Lecanicillium muscarium (Hyphomycetes: Moniliales) on various hosts. European Journal of Entomology, 104 (1): 67.
  • Ateş M., E. Acar, Y. İstekli, Ö. Güven & G. Karaca, 2015. Effects of entomopathogenic fungi on tomato defense against root rot (Turkey). 5th Entomopathogens and Microbial Conrol Congress, 09-11 September 2015, Ankara-Turkey, s93.
  • Augé R.M., 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11 (1): 3-42.
  • Bamisile B.S., C.K. Dash, K.S. Akutse, R. Keppanan & L. Wang, 2018. Fungal endophytes: beyond herbivore management. Frontiers in microbiology, 9: 544.
  • Baron, N.C., E.C. Rigobelo, & D.C. Zied, 2019. Filamentous fungi in biological control: current status and future perspectives. Chilean Journal of Agricultural Research, 79 (2), 307-315.
  • Barra-Bucarei L., A. France & P. Millas, 2019. Crossing frontiers: Endophytic entomopathogenic fungi for biological control of plant diseases. In: Endophytes for a Growing World, Eds. T.R. Hodkinson, F.M. Doohan, M.J. Saunders, B.R. Murphy, Cambridge University Press, pp. 67-93.
  • Behie S.W., P.M. Zelisko & M.J. Bidochka, 2012. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 336 (6088): 1576-1577.
  • Behie S.W. & M. J. Bidochka, 2014. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl. Environ. Microbiol, 80 (5): 1553-1560.
  • Behie S.W., C.C. Moreira, I. Sementchoukova, L. Barelli, P.M. Zelisko & M.J. Bidochka, 2017. Carbon translocation from a plant to an insect pathogenic endophytic fungus. Nature Communications, 8 (1): 1-5.
  • Benhamou N. & J. Brodeur, 2001. Pre-inoculation of Ri T-DNA transformed cucumber roots with the mycoparasite, Verticillium lecanii, induces host defense reactions against Pythium ultimum infection. Physiological and Molecular Plant Pathology, 58 (3): 133-146.
  • Canassa F., S. Tall, R.A. Moral, I.A. de Lara, I. Delalibera Jr. & N.V. Meyling, 2019. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biological Control, 132: 199-208.
  • Carroll G., 1988. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69 (1), 2-9.
  • Chen M., M. Arato, L. Borghi, E. Nouri & D. Reinhardt, 2018. Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Frontiers in Plant Science, 9: 1270.
  • Choudhary D.K., A. Prakash & B.N. Johri, 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 47 (4): 289-297.
  • Dara S.K., 2013. Entomopathogenic fungus Beauveria bassiana promotes strawberry plant growth and health. E-Journal of Entomology and Biologicals, https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=11624
  • Dara, S.K. & D. Peck, 2016. Impact of Entomopathogenic Fungi and Beneficial Microbes on Strawberry Growth, Health and Yield. E-Journal of Entomology and Biologicals, https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=22709
  • Dara S.K., S.S. Dara, S.S.R. Dara & T. Anderson, 2016. First report of three entomopathogenic fungi offering protection against the plant pathogen, Fusarium oxysporum f. sp. vasinfectum. E-Journal of Entomology and Biologicals, https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=22199
  • Dara S.K., 2019. Non-Entomopathogenic roles of entomopathogenic fungi in promoting plant health and growth. Insects, 10 (9): 277.
  • Dash C.K., B.S. Bamisile, R. Keppanan, M. Qasim, Y. Lin, S.U. Islam & L. Wang, 2018. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microbial Pathogenesis, 125: 385-392.
  • Gómez‐Vidal S., J. Salinas, M. Tena & L.V. Lopez-Llorca, 2009. Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis, 30 (17): 2996- 3005.
  • Hassaan, M.A. & A. El Nemr, 2020. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egyptian Journal of Aquatic Research, 46: 207-220.
  • Jaber L.R. & N.M. Salem, 2014. Endophytic colonization of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Science and Technology, 24 (10): 1096-1109.
  • Jaber L.R., 2015. Grapevine leaf tissue colonization by the fungal entomopathogen Beauveria bassiana. L. and its effect against downy mildew. BioControl, 60 (1): 103-112.
  • Jaber L.R. & J. Enkerli, 2016. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control, 103: 187-195.
  • Kang B.R., J.H. Han, J.J. Kim. & Y.C. Kim, 2018. Dual biocontrol potential of the entomopathogenic fungus, Isaria javanica, for both aphids and plant fungal pathogens. Mycobiology, 46 (4): 440-447.
  • Karthiba L., K. Saveetha, S. Suresh, T. Raguchander, D. Saravanakumar & R. Samiyappan, 2010. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Management Science, 66 (5): 555-564.
  • Koike M., T. Higashio, A. Komori, K. Akiyama, N. Kishimoto, E. Masuda & M. Sugimoto, 2004. Verticillium lecanii (Lecanicillium spp.) as epiphyte and its application to biological control of arthropod pests and diseases. IOBC/WPRS Bullettin, 27 (8): 41-44.
  • Krell V., S. Unger, D. Jakobs-Schoenwandt & A.V. Patel, 2018. Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecology, 34: 43-49.
  • Küçük Ç. & İ. Güler, 2009. Bitki Gelişimini Teşvik Eden Bazı Biyokontrol Mikroorganizmalar. Elektronik Mikrobiyoloji Dergisi TR (Eski adı: OrLab On-Line Mikrobiyoloji Dergisi), 7 (1): 30-42.
  • Lee Y.S., J.H. Han, B.R. Kang & Y.C. Kim, 2019. Dibutyl succinate, produced by an insect pathogenic fungus, Isaria javanica pf185, is a metabolite that controls of aphids and a fungal disease, anthracnose. Pest Management Science, 75 (3): 852-858.
  • Lopez D.C. & G.A. Sword, 2015. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89: 53-60.
  • Mantzoukas S., J. Lagogiannis, D. Mpousia, A. Ntoukas, K. Karmakolia, P.A. Eliopoulos & K. Poulas, 2021. Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine Vitis vinifera. Journal of Fungi, 7: 142.
  • Moloinyane S. & F. Nchu, 2019. The Effects of endophytic Beauveria bassiana inoculation on infestation level of Planococcus ficus, growth and volatile constituents of potted greenhouse grapevine (Vitis vinifera L.). Toxins, 11 (2): 72.
  • Ownley B.H., R.M. Pereira, W.E. Klingeman, N.B. Quigley & B.M. Leckie, 2004. Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. Emerging Concepts in Plant Health Management. Research Signpost. (pp. 255-269).
  • Ownley B.H., M.R. Griffin, W.E. Klingeman, K.D. Gwinn, J.K. Moulton & R.M. Pereira, 2008. Beauveria bassiana: endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98 (3): 267-270.
  • Ownley B.H., K.D. Gwinn & F.E. Vega, 2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 55 (1): 113-128.
  • Pérez L.I., P.E. Gundel, C.M. Ghersa & M. Omacini, 2013. Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecology, 6 (5): 379-386.
  • Picardal J.P., E.D. Tundag, M.T. Picardal & G. Goc-ong, 2019. Antagonistic Activity of Metarhizium anisopliae (Metschnikoff) Against Phytopathogenic Fusarium oxysporum f. sp. cubense (Schlecht.) as a Biological Control. CNU Journal of Higher Education, 13 (1): 25-33.
  • Pineda A., S.J. Zheng, J.J. Van Loon, C.M. Pieterse & M. Dicke, 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 15 (9): 507-514.
  • Pineda A., I. Kaplan & T.M. Bezemer, 2017. Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science, 22 (9): 770-778.
  • Raad M., T.R. Glare, H.L. Brochero, C. Müller & M. Rostás, 2019. Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Frontiers in Microbiology, 10: 615.
  • Raya-Díaz S., A.R. Sanchez-Rodriguez, J.M. Segura-Fernández, M.D.C. del Campillo & E. Quesada-Moraga, 2017. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PloSone, 12 (10).
  • Rivas-Franco, F., J.G. Hampton, M.E. Morán-Diez, J. Narciso, M. Rostás, P. Wessman & T.R. Glare, 2019. Effect of coating maize seed with entomopathogenic fungi on plant growth and resistance against Fusarium graminearum and Costelytra giveni. Biocontrol Science and Technology, 29 (9): 877-900.
  • Russo M.L., S.A. Pelizza, M.F. Vianna, N. Allegrucci, M.N. Cabello, A.V. Toledo & A.C. Scorsetti, 2019. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. Journal of King Saud University-Science, 31 (4): 728-736.
  • Sasan R.K. & M.J. Bidochka, 2013. Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Canadian Journal of Plant Pathology, 35 (3): 288-293.
  • Saikkonen K., P. Wäli, M. Helander & S. H. Faeth, 2004. Evolution of endophyte–plant symbioses. Trends in Plant Science, 9 (6): 275-280.
  • Senthilraja G., T. Anand, J.S. Kennedy, T. Raguchander & R. Samiyappan, 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiological and Molecular Plant Pathology, 82: 10-19.
  • Sharma P., 2011. Complexity of' Trichoderma-Fusarium interaction and manifestation of biological control. Australian Journal of Crop Science, 5 (8): 1027.
  • Sheroze A., A. Rashid, A.S. Shakir & S.M. Khan, 2003. Effect of bio-control agents on leaf rust of wheat and influence of different temperature and humidity levels on their colony growth. International Journal of Agriculture & Biology, 5 (1): 83-85.
  • Şentürk Ş. & O. Abacı-Günyar, 2019. Fungal Biyokontrol Ajanları ve Metabolitleri. Mantar Dergisi, 10 (1): 70-83.
  • Tall S. & N.V. Meyling, 2018. Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microbial Ecology, 76 (4): 1002-1008.
  • Tozlu E., 2016. Bazı bakteriyel biyokontrol ajanlar ile havuç acı çürüklük hastalığı (Geotrichum candidum Link)’nın biyolojik mücadelesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 47 (1): 1-9.
  • Vandermeer J., I. Perfecto & H. Liere, 2009. Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathology, 58 (4): 636-641.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Şehnaz Mertoğlu 0000-0002-9205-8896

Gürsel Hatat Karaca 0000-0002-5159-2734

Melis Bilginturan 0000-0002-4351-7646

Yayımlanma Tarihi 5 Temmuz 2022
Gönderilme Tarihi 4 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Mertoğlu, Ş., Hatat Karaca, G., & Bilginturan, M. (2022). Entomopatojen fungusların bitki gelişimi ve bitkilerde hastalık oluşumu üzerine etkileri. Türkiye Biyolojik Mücadele Dergisi, 13(1), 88-102. https://doi.org/10.31019/tbmd.928768
AMA Mertoğlu Ş, Hatat Karaca G, Bilginturan M. Entomopatojen fungusların bitki gelişimi ve bitkilerde hastalık oluşumu üzerine etkileri. Türk. biyo. müc. derg. Temmuz 2022;13(1):88-102. doi:10.31019/tbmd.928768
Chicago Mertoğlu, Şehnaz, Gürsel Hatat Karaca, ve Melis Bilginturan. “Entomopatojen fungusların Bitki gelişimi Ve Bitkilerde hastalık oluşumu üzerine Etkileri”. Türkiye Biyolojik Mücadele Dergisi 13, sy. 1 (Temmuz 2022): 88-102. https://doi.org/10.31019/tbmd.928768.
EndNote Mertoğlu Ş, Hatat Karaca G, Bilginturan M (01 Temmuz 2022) Entomopatojen fungusların bitki gelişimi ve bitkilerde hastalık oluşumu üzerine etkileri. Türkiye Biyolojik Mücadele Dergisi 13 1 88–102.
IEEE Ş. Mertoğlu, G. Hatat Karaca, ve M. Bilginturan, “Entomopatojen fungusların bitki gelişimi ve bitkilerde hastalık oluşumu üzerine etkileri”, Türk. biyo. müc. derg, c. 13, sy. 1, ss. 88–102, 2022, doi: 10.31019/tbmd.928768.
ISNAD Mertoğlu, Şehnaz vd. “Entomopatojen fungusların Bitki gelişimi Ve Bitkilerde hastalık oluşumu üzerine Etkileri”. Türkiye Biyolojik Mücadele Dergisi 13/1 (Temmuz 2022), 88-102. https://doi.org/10.31019/tbmd.928768.
JAMA Mertoğlu Ş, Hatat Karaca G, Bilginturan M. Entomopatojen fungusların bitki gelişimi ve bitkilerde hastalık oluşumu üzerine etkileri. Türk. biyo. müc. derg. 2022;13:88–102.
MLA Mertoğlu, Şehnaz vd. “Entomopatojen fungusların Bitki gelişimi Ve Bitkilerde hastalık oluşumu üzerine Etkileri”. Türkiye Biyolojik Mücadele Dergisi, c. 13, sy. 1, 2022, ss. 88-102, doi:10.31019/tbmd.928768.
Vancouver Mertoğlu Ş, Hatat Karaca G, Bilginturan M. Entomopatojen fungusların bitki gelişimi ve bitkilerde hastalık oluşumu üzerine etkileri. Türk. biyo. müc. derg. 2022;13(1):88-102.