Konferans Bildirisi
BibTex RIS Kaynak Göster

Predator akar Neoseiulus californicus (McGregor) (Acari: Phytoseiidae)'un dört farklı popülasyonunun spirodiclofen, hexythiazox, etoxazole karşı direnç düzeyleri ve direnç mekanizmalarının belirlenmesi

Yıl 2014, Cilt: 5 Sayı: 2, 81 - 89, 13.07.2016

Öz

Bu çalışmada, Isparta ili elma bahçelerinden 2013 yılında toplanan Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) popülasyonlarının spirodiclofen, hexythiazox ve etoxazole karşı duyarlılık düzeyleri biyoassay yöntemlerle belirlenmiştir. N. californicus popülasyonlarının LC50 değeri ilaçlama kulesi kullanılarak yaprak disk metodu ile bulunmuştur. 2013 yılında elma bahçelerinden toplanan N. californicus'un Gönen, Esinyurt, Gelendost ve Ağılköy beldelerinden toplanan popülasyonlarında spirodiclofen'e karşı sırasıyla 6.36, 7.52, 5.12 ve 6.57 kat; hexythiazox‟a karĢı 7.75, 8.02, 5.23 ve 8.06 kat ve etoxazole karşı 11.47, 13.31, 6.59 ve 11.75 kat direnç belirlenmiştir. Ayrıca N. californicus popülasyonlarında PBO, IBP ve DEM sinerjistlerinin akarisiler ile sinerjistik etkileri incelenmiştir. PBO, IBP ve DEM sinerjistik etki sonuçları Gönen popülasyonu için ˂1-1.37 kat, 1.02-1.35 kat ve ˂1 kat; Esinyurt popülasyonu için ˂1-1.26 kat, 1.23-1.33 kat ve ˂1 kat; Gelendost popülasyonu için ˂1, ˂1-1.01 ve ˂1 kat; Ağılköy popülasyonu için ˂1-1.05 kat, 1.02-1.72 kat ve ˂1 kat değerleri arasında belirlenmiştir. N. californicus popülasyonlarında glutathion S-transferaz (GST) ve monooksigenaz (P450) enzimleri kinetik yöntemle, esteraz enzimi elektroforez ve kinetik yöntemlerle belirlenmiştir. Esteraz, glutathion S-transferaz (GST) ve monooksigenaz (P450) enzim aktiviteleri sırasıyla 8.98- 11.05, 2.05-2.62 ve 0.0239-0.0426 mOD min-1 mg -1 protein olarak bulunmuştur.

Kaynakça

  • Alzoubi S. & S. Çobanoğlu 2008. Toxicity of some pesticides against Tetranychus urticae and its predatory mites under laboratory conditions. American-Eurasian Journal of Agricultural&Environmental Science, 3(1):30–37.
  • Ay R. & M.O. Gürkan 2005. Resistance to bifenthrin and resistance mechanisms of different strains of the two-spotted spider mite (Tetranychus urticae Koch) from Turkey. Phytoparasitica, 33: 237-244.
  • Auger P., R. Bonafos, S.Kreiter & R. Delorme 2005. A genetic analysis of moncozeb resistance in Typhlodromus pyri (Acari:Phytoseiidae). Experimental and Applied Acarology, 37: 83- 91.
  • Bonafos R., E. Serrano, P. Auger & S. Kreiter 2007. Resistance to deltamethrin, lambdacyhalothrin and chlorpyriphos-ethyl in some populations of Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari:Phytoseiidae) from vineyards in the south-west of france. Crop Protection, 26: 169–172.
  • Booth L.H., S.D. Wratten & P. Kehrli 2007. Effects of reduced rates of two insecticides on enzyme activity and mortality of an aphid and its lacewing predator. Journal Economic Entomology, 100(1): 11-19.
  • Bradford M.M. 1976. A rapid and sensitiv method for the quantitation of microgramm quantities of protein utilizing the principle of protein – dye inding. Analytical Biochemistry, 72: 248-254.
  • Bretschneider T., R. Fischer & R. Nauen 2007. Inhibitors of Lipid Synthesis (Acetyl-CoACarboxylase Inhibitors), in Modern Crop Crotection Compounds. Weinheim Germany, 925 pp.
  • Canlas L.J., H. Amano, N. Ochiai & M. Takeda 2006. Biology and predation of the japanese strain of Neoseiulus californicus (McGregor) (Acari:Phytoseiidae). System Applied Acarology 11: 141-157.
  • Castagnoli M. & L. Falchin 1993. Suitability of Polypphagotarsonemus latus (Banks) (Acari:Tarsonemidae) as prey for Amblyseius californicus (McGregor) (Acarina:Phytoseidae). Redia 77: 273-279.
  • Castagnoli M. & S. Simoni 1999. Effect of long-term feeding history on functional and numerical response of Neoseiulus californicus (Acari:Phytoseiidae). Experimental Applied Acarology, 23: 217-234.
  • Croft B.A., J.S. Blackwood & J.A McMurtry 2004. Classifying life-style types of phytoseiid mites: diagnostic traits. Experimental Applied Acarology, 33: 247–260.
  • Çakmak Ġ., A. Janssen, M. W. Sabelis & H. BaĢpınar 2009. Biological control of an acarine pest by single and multiple natural enemies. Biological Control, 50: 60–65.
  • Dekeyser A.M. 2005. Review acaricide mode of action. Pest Management Science, 61:103– 110.
  • Dunley J. E., R.H. Messing & B.A. Croft 1991. Levels and genetics of organophosphate resistance in Italian and Oregon biotypes of Amblyseius andersoni (Acari:Phytoseeidae). Journal of Economic Entomology 84: 750-755
  • Goka K. & A. Takafuji 1992. Enzyme variations among Japanese populations of the twospotted spider mites, Tetranychus urticae Koch. Applied Entomology Zoology, 27: 141–150.
  • Gotoh T., A. Tsuchiya & Y. Kitashima 2006. Influence of prey on developmental performance, reproduction and prey consumption of Neoseiulus californicus (Acari: Phytoseiidae). Experimental Applied Acarology, 40: 189-204.
  • Kazak C., K., Karut, I., Kasap, C., Kibritci & E. Sekeroglu 2002. The potential of the Hatay population of Phytoseiulus persimilis to control the carmine spider mite Tetranychus cinnabarinus in strawberry in Silifke-Icel, Turkey. Phytoparasitica, 30(5) 451- 458.
  • Kim Y.J., S.H. Lee, S.W. Lee & Y.J. Ahn 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Management Science, 60(10): 1001-1006.
  • Kumral N.A., N.S. Gencer, H. Susurluk & C. Yalcin 2011. A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities ın Stethorus gılvıfrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina:Tetranychidae). International Journal of Acarology,l 37: 255–268.
  • KuĢtutan O. & İ. Çakmak 2009. Development, fecundity, and prey consumption of Neoseiulus californicus (McGregor) Fed Tetranychus cinnabarinus Boisduval. Turkish Journal of Agriculture and Forestry, 33: 19-28.
  • LeOra Software 1994. Polo-pc: a user‟s guide to probit or logit analysis leora software. Berkeley, 28 pp.
  • Luh H.K. & B.A. Croft 2001. Quantitative classification of life-style types in predaceous phytoseiid mites. Experimental Applied Acarology, 25:403–424.
  • McMurtry J.A. & J.G. Rodrigues 1987. Nutritional ecology of phytoseiid mites (Editor: Slanski F. & J.G. Rodrigues, Nutritional ecology of insects, mites, spiders and related invertebrates). Wiley Interscience, New York, 609–644.
  • McMurtry J.A. & B.A. Croft 1997. Life-styles of phytoseiid mites and their role in biological control. Annual Review Entomology, 42: 291–321.
  • Mugo H.M. E.M. El-Banhawy, L.W. Irungu, P.N. Ndegwa & D.N. Mburu 2011. Resistance of predacious mite, Euseıus kenyae (Acari: Phytoseiidae) to chlorpyrifos (Dursban) ın kenyan coffee farms. Journal of Agriculture Science and Technology, 13: 53- 59.
  • Nauen R., N., Stumpf, A., Elbert, C., Zebitz & PW. Kraus 2001. Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science, 57: 253-261.
  • Nauen R. & G. Smagghe 2006. Rapid report mode of action of etoxazole. Pesticide Managament Science, 62:379–382.
  • Palevsky E., H. Reuveny, O. Okonis & U. Gerson 1999 . Comparative behavioural studies of larval and adult stages of the Phytoseiids (Acarina: Mesostigmata) Typhlodromus athiasae and Neoseiulus californicus. Experimental Applied Acoralogy, 23:467-485.
  • Rauch N. & R. Nauen 2003. Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pesticide Biochemistry and Physiology, 74: 91-101.
  • Rose R.L., R. Barbhaiya, G. Rock & E. Hodgson 1995. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemical Physiology, 51: 178–191.
  • Sanatgar E., R.V. Shoushtari, A.A. Zamani, M. Arbabi & E.S. Nejadian 2011. Effect of frequent application of hexythiazox on predatory mite Phytoseiulus persimilis Athias - Henriot (Acari: Phytoseiidae). Acade Journal of Entomology, 4: 94-101.
  • Sato E.M., T. Miyata, A. Kawai & O. Nakano 2000. Selection for resistance and susceptibility to methidathion and cross resistance in Amblyseius wormersleyi Schicha (Acari: Phytoseiidae). Applied Entomology Zoology, 35(3): 393-399.
  • Sato E.M., T. Miyata, A. Kawai & O. Nakano 2001. Methidathion resistance mechanisms in Amblyseius womersleyi Schicha (Acari: Phytoseiidae). Pesticide Biochemistry and Physiology, 69: 1–12.
  • Sato E.M., T. Tanaka & T. Miyata 2006. Monooxygenase activity in methidathion resistant and susceptible populations of Amblyseius wormersleyi Schicha (Acari: Phytoseiidae). Experimental Applied Acarology, 39: 13-24.
  • Sayyed A.H., A.K. Pahtan & U. Faheem 2010. Cross-resistance, genetics and stability of resistance to deltamethrin in a population of Chrysoperla carnea from Multan, Pakistan. Pesticide Biochemical and Physiology, 98: 325–332.
  • Sekeroglu E. & C. Kazak 1993. First record of Phytoseiulus persimilis (Acari: Phytoseiidae) in Turkey. Entomophaga, 38(3) 343-345.
  • Stenseth C. 1979. Effect of temperature and humiditiy on the development of Phytoseiulus persimilis and its ability to regulate populations of Tetranychus urticae (Acari: Tetranychidae). Entomophaga, 249: 311-317.
  • Stumpf N. & R. Nauen 2002. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72: 111-121.
  • Tirello P., A. Pozzebon & C. Duso 2012. Resistance to chlorpyriphos in the predatory mite Kampimodromus aberrans. Experimental Applied Acarology, 56: 1–8.
  • Winer B.J., D.R. Brown & K.M. Michels 1991. Statistical Principles in Experimental Design. ISBN 0-07-070982-3, New York 552 p.
  • Van Leeuwen T., V. Stıllatus & L. Tırry 2004. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 32: 249–261.
  • Van Pottelberge S., T. Van Leeuwen, J. Khajehali & L. Tirry 2009. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Management Science, 65: 358–366.
  • Yamamoto A., H. Yoneda, R. Hatano & M. Asada 1996. Realized heritability estimates of hexythiazox resistance in the citrus red mite Panonychus citri (McGregor). Journal of Pesticide Science, 21: 43-47.
  • Yorulmaz S. & R. Ay 2012. Isparta ili elma bahçelerinden toplanan avcı akar Neoseiulus californicus (Acari: Phytoseiidae) popülasyonlarının bazı akarisitlere karĢı direnç düzeyleri ve direnç mekanizmaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(2): 122-132.
  • Yorulmaz Salman S. & R. Ay 2013. Analysis of hexythiazox resistance mechanisms in laboratory selected predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Turkish Journal of Entomology, 37(4):409-422.
  • Zhang Z.Q. 2003. Mites of Greenhouses: Identification, Biology, and Control. CAB Publising, Wallingford, Oxon, 112pp.

Resistance levels and resistance mechanisms of four different populations of the predatory mite Neoseiulus californicus (McGregor) (Acari:Phytoseiidae) against spirodiclofen, hexythiazox and etoxazole

Yıl 2014, Cilt: 5 Sayı: 2, 81 - 89, 13.07.2016

Öz

In this study, the sensitivity levels of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) populations collected from apple orchards in Isparta province in 2013 to spirodiclofen, hexythiazox and etoxazole were determined by means of bioassay. The LC50 values of N. californicus populations were determined with the leaf disk method and a spray tower. In the populations of N. californicus collected from apple orchards in Gönen, Esinyurt, Gelendost and Ağılköy towns, 6.36-, 7.52-, 5.12- and 6.57-fold resistance to spirodiclofen was found, respectively; 7.75-, 8.02-, 5.23- and 8.06-fold resistance to hexythiazox was found, respectively; and 11.47-, 13.31-, 6.59- and 11.75-fold resistance to etoxazole was found, respectively. Furthermore, the effects of the synergists PBO, IBP and DEM were studied in N. californicus populations. The results for the synergistic effects of PBO, IBP and DEM were ˂1-1.37, 1.02-1.35 and ˂1-fold, respectively, for the Gönen population; ˂1-1.26, 1.23-1.33 and ˂1 fold, respectively, for the Esinyurt population; ˂1, ˂1-1.01 and ˂1fold, respectively, for the Gelendost population; and ˂1-1.05, 1.02-1.72 and ˂1 fold for the Ağılköy population. In the populations of N. californicus, glutathioın Stransferase (GST) and monooxygenase (P450) enzymes were identified with the kinetic method and the esterase enzyme was identified through electrophoresis and the kinetic method. The enzyme activities of esterase, glutathione S-transferase (GST) and monooxygenase (P450) were 8.98-11.05, 2.05-2.62 and 0.0239-0.0426 mOD min-1 mg -1 protein, respectively.

Kaynakça

  • Alzoubi S. & S. Çobanoğlu 2008. Toxicity of some pesticides against Tetranychus urticae and its predatory mites under laboratory conditions. American-Eurasian Journal of Agricultural&Environmental Science, 3(1):30–37.
  • Ay R. & M.O. Gürkan 2005. Resistance to bifenthrin and resistance mechanisms of different strains of the two-spotted spider mite (Tetranychus urticae Koch) from Turkey. Phytoparasitica, 33: 237-244.
  • Auger P., R. Bonafos, S.Kreiter & R. Delorme 2005. A genetic analysis of moncozeb resistance in Typhlodromus pyri (Acari:Phytoseiidae). Experimental and Applied Acarology, 37: 83- 91.
  • Bonafos R., E. Serrano, P. Auger & S. Kreiter 2007. Resistance to deltamethrin, lambdacyhalothrin and chlorpyriphos-ethyl in some populations of Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari:Phytoseiidae) from vineyards in the south-west of france. Crop Protection, 26: 169–172.
  • Booth L.H., S.D. Wratten & P. Kehrli 2007. Effects of reduced rates of two insecticides on enzyme activity and mortality of an aphid and its lacewing predator. Journal Economic Entomology, 100(1): 11-19.
  • Bradford M.M. 1976. A rapid and sensitiv method for the quantitation of microgramm quantities of protein utilizing the principle of protein – dye inding. Analytical Biochemistry, 72: 248-254.
  • Bretschneider T., R. Fischer & R. Nauen 2007. Inhibitors of Lipid Synthesis (Acetyl-CoACarboxylase Inhibitors), in Modern Crop Crotection Compounds. Weinheim Germany, 925 pp.
  • Canlas L.J., H. Amano, N. Ochiai & M. Takeda 2006. Biology and predation of the japanese strain of Neoseiulus californicus (McGregor) (Acari:Phytoseiidae). System Applied Acarology 11: 141-157.
  • Castagnoli M. & L. Falchin 1993. Suitability of Polypphagotarsonemus latus (Banks) (Acari:Tarsonemidae) as prey for Amblyseius californicus (McGregor) (Acarina:Phytoseidae). Redia 77: 273-279.
  • Castagnoli M. & S. Simoni 1999. Effect of long-term feeding history on functional and numerical response of Neoseiulus californicus (Acari:Phytoseiidae). Experimental Applied Acarology, 23: 217-234.
  • Croft B.A., J.S. Blackwood & J.A McMurtry 2004. Classifying life-style types of phytoseiid mites: diagnostic traits. Experimental Applied Acarology, 33: 247–260.
  • Çakmak Ġ., A. Janssen, M. W. Sabelis & H. BaĢpınar 2009. Biological control of an acarine pest by single and multiple natural enemies. Biological Control, 50: 60–65.
  • Dekeyser A.M. 2005. Review acaricide mode of action. Pest Management Science, 61:103– 110.
  • Dunley J. E., R.H. Messing & B.A. Croft 1991. Levels and genetics of organophosphate resistance in Italian and Oregon biotypes of Amblyseius andersoni (Acari:Phytoseeidae). Journal of Economic Entomology 84: 750-755
  • Goka K. & A. Takafuji 1992. Enzyme variations among Japanese populations of the twospotted spider mites, Tetranychus urticae Koch. Applied Entomology Zoology, 27: 141–150.
  • Gotoh T., A. Tsuchiya & Y. Kitashima 2006. Influence of prey on developmental performance, reproduction and prey consumption of Neoseiulus californicus (Acari: Phytoseiidae). Experimental Applied Acarology, 40: 189-204.
  • Kazak C., K., Karut, I., Kasap, C., Kibritci & E. Sekeroglu 2002. The potential of the Hatay population of Phytoseiulus persimilis to control the carmine spider mite Tetranychus cinnabarinus in strawberry in Silifke-Icel, Turkey. Phytoparasitica, 30(5) 451- 458.
  • Kim Y.J., S.H. Lee, S.W. Lee & Y.J. Ahn 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Management Science, 60(10): 1001-1006.
  • Kumral N.A., N.S. Gencer, H. Susurluk & C. Yalcin 2011. A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities ın Stethorus gılvıfrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina:Tetranychidae). International Journal of Acarology,l 37: 255–268.
  • KuĢtutan O. & İ. Çakmak 2009. Development, fecundity, and prey consumption of Neoseiulus californicus (McGregor) Fed Tetranychus cinnabarinus Boisduval. Turkish Journal of Agriculture and Forestry, 33: 19-28.
  • LeOra Software 1994. Polo-pc: a user‟s guide to probit or logit analysis leora software. Berkeley, 28 pp.
  • Luh H.K. & B.A. Croft 2001. Quantitative classification of life-style types in predaceous phytoseiid mites. Experimental Applied Acarology, 25:403–424.
  • McMurtry J.A. & J.G. Rodrigues 1987. Nutritional ecology of phytoseiid mites (Editor: Slanski F. & J.G. Rodrigues, Nutritional ecology of insects, mites, spiders and related invertebrates). Wiley Interscience, New York, 609–644.
  • McMurtry J.A. & B.A. Croft 1997. Life-styles of phytoseiid mites and their role in biological control. Annual Review Entomology, 42: 291–321.
  • Mugo H.M. E.M. El-Banhawy, L.W. Irungu, P.N. Ndegwa & D.N. Mburu 2011. Resistance of predacious mite, Euseıus kenyae (Acari: Phytoseiidae) to chlorpyrifos (Dursban) ın kenyan coffee farms. Journal of Agriculture Science and Technology, 13: 53- 59.
  • Nauen R., N., Stumpf, A., Elbert, C., Zebitz & PW. Kraus 2001. Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science, 57: 253-261.
  • Nauen R. & G. Smagghe 2006. Rapid report mode of action of etoxazole. Pesticide Managament Science, 62:379–382.
  • Palevsky E., H. Reuveny, O. Okonis & U. Gerson 1999 . Comparative behavioural studies of larval and adult stages of the Phytoseiids (Acarina: Mesostigmata) Typhlodromus athiasae and Neoseiulus californicus. Experimental Applied Acoralogy, 23:467-485.
  • Rauch N. & R. Nauen 2003. Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pesticide Biochemistry and Physiology, 74: 91-101.
  • Rose R.L., R. Barbhaiya, G. Rock & E. Hodgson 1995. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemical Physiology, 51: 178–191.
  • Sanatgar E., R.V. Shoushtari, A.A. Zamani, M. Arbabi & E.S. Nejadian 2011. Effect of frequent application of hexythiazox on predatory mite Phytoseiulus persimilis Athias - Henriot (Acari: Phytoseiidae). Acade Journal of Entomology, 4: 94-101.
  • Sato E.M., T. Miyata, A. Kawai & O. Nakano 2000. Selection for resistance and susceptibility to methidathion and cross resistance in Amblyseius wormersleyi Schicha (Acari: Phytoseiidae). Applied Entomology Zoology, 35(3): 393-399.
  • Sato E.M., T. Miyata, A. Kawai & O. Nakano 2001. Methidathion resistance mechanisms in Amblyseius womersleyi Schicha (Acari: Phytoseiidae). Pesticide Biochemistry and Physiology, 69: 1–12.
  • Sato E.M., T. Tanaka & T. Miyata 2006. Monooxygenase activity in methidathion resistant and susceptible populations of Amblyseius wormersleyi Schicha (Acari: Phytoseiidae). Experimental Applied Acarology, 39: 13-24.
  • Sayyed A.H., A.K. Pahtan & U. Faheem 2010. Cross-resistance, genetics and stability of resistance to deltamethrin in a population of Chrysoperla carnea from Multan, Pakistan. Pesticide Biochemical and Physiology, 98: 325–332.
  • Sekeroglu E. & C. Kazak 1993. First record of Phytoseiulus persimilis (Acari: Phytoseiidae) in Turkey. Entomophaga, 38(3) 343-345.
  • Stenseth C. 1979. Effect of temperature and humiditiy on the development of Phytoseiulus persimilis and its ability to regulate populations of Tetranychus urticae (Acari: Tetranychidae). Entomophaga, 249: 311-317.
  • Stumpf N. & R. Nauen 2002. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72: 111-121.
  • Tirello P., A. Pozzebon & C. Duso 2012. Resistance to chlorpyriphos in the predatory mite Kampimodromus aberrans. Experimental Applied Acarology, 56: 1–8.
  • Winer B.J., D.R. Brown & K.M. Michels 1991. Statistical Principles in Experimental Design. ISBN 0-07-070982-3, New York 552 p.
  • Van Leeuwen T., V. Stıllatus & L. Tırry 2004. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 32: 249–261.
  • Van Pottelberge S., T. Van Leeuwen, J. Khajehali & L. Tirry 2009. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Management Science, 65: 358–366.
  • Yamamoto A., H. Yoneda, R. Hatano & M. Asada 1996. Realized heritability estimates of hexythiazox resistance in the citrus red mite Panonychus citri (McGregor). Journal of Pesticide Science, 21: 43-47.
  • Yorulmaz S. & R. Ay 2012. Isparta ili elma bahçelerinden toplanan avcı akar Neoseiulus californicus (Acari: Phytoseiidae) popülasyonlarının bazı akarisitlere karĢı direnç düzeyleri ve direnç mekanizmaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(2): 122-132.
  • Yorulmaz Salman S. & R. Ay 2013. Analysis of hexythiazox resistance mechanisms in laboratory selected predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Turkish Journal of Entomology, 37(4):409-422.
  • Zhang Z.Q. 2003. Mites of Greenhouses: Identification, Biology, and Control. CAB Publising, Wallingford, Oxon, 112pp.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Diğer ID JA33JG92HK
Bölüm Makaleler
Yazarlar

Sibel Yorulmaz Salman Bu kişi benim

Fatma Aydınlı Bu kişi benim

Recep Ay Bu kişi benim

Yayımlanma Tarihi 13 Temmuz 2016
Gönderilme Tarihi 13 Temmuz 2016
Yayımlandığı Sayı Yıl 2014 Cilt: 5 Sayı: 2

Kaynak Göster

APA Salman, S. Y., Aydınlı, F., & Ay, R. (2016). Predator akar Neoseiulus californicus (McGregor) (Acari: Phytoseiidae)’un dört farklı popülasyonunun spirodiclofen, hexythiazox, etoxazole karşı direnç düzeyleri ve direnç mekanizmalarının belirlenmesi. Türkiye Biyolojik Mücadele Dergisi, 5(2), 81-89.
AMA Salman SY, Aydınlı F, Ay R. Predator akar Neoseiulus californicus (McGregor) (Acari: Phytoseiidae)’un dört farklı popülasyonunun spirodiclofen, hexythiazox, etoxazole karşı direnç düzeyleri ve direnç mekanizmalarının belirlenmesi. Türk. biyo. müc. derg. Temmuz 2016;5(2):81-89.
Chicago Salman, Sibel Yorulmaz, Fatma Aydınlı, ve Recep Ay. “Predator Akar Neoseiulus Californicus (McGregor) (Acari: Phytoseiidae)’un dört Farklı popülasyonunun Spirodiclofen, Hexythiazox, Etoxazole karşı Direnç düzeyleri Ve Direnç mekanizmalarının Belirlenmesi”. Türkiye Biyolojik Mücadele Dergisi 5, sy. 2 (Temmuz 2016): 81-89.
EndNote Salman SY, Aydınlı F, Ay R (01 Temmuz 2016) Predator akar Neoseiulus californicus (McGregor) (Acari: Phytoseiidae)’un dört farklı popülasyonunun spirodiclofen, hexythiazox, etoxazole karşı direnç düzeyleri ve direnç mekanizmalarının belirlenmesi. Türkiye Biyolojik Mücadele Dergisi 5 2 81–89.
IEEE S. Y. Salman, F. Aydınlı, ve R. Ay, “Predator akar Neoseiulus californicus (McGregor) (Acari: Phytoseiidae)’un dört farklı popülasyonunun spirodiclofen, hexythiazox, etoxazole karşı direnç düzeyleri ve direnç mekanizmalarının belirlenmesi”, Türk. biyo. müc. derg, c. 5, sy. 2, ss. 81–89, 2016.
ISNAD Salman, Sibel Yorulmaz vd. “Predator Akar Neoseiulus Californicus (McGregor) (Acari: Phytoseiidae)’un dört Farklı popülasyonunun Spirodiclofen, Hexythiazox, Etoxazole karşı Direnç düzeyleri Ve Direnç mekanizmalarının Belirlenmesi”. Türkiye Biyolojik Mücadele Dergisi 5/2 (Temmuz 2016), 81-89.
JAMA Salman SY, Aydınlı F, Ay R. Predator akar Neoseiulus californicus (McGregor) (Acari: Phytoseiidae)’un dört farklı popülasyonunun spirodiclofen, hexythiazox, etoxazole karşı direnç düzeyleri ve direnç mekanizmalarının belirlenmesi. Türk. biyo. müc. derg. 2016;5:81–89.
MLA Salman, Sibel Yorulmaz vd. “Predator Akar Neoseiulus Californicus (McGregor) (Acari: Phytoseiidae)’un dört Farklı popülasyonunun Spirodiclofen, Hexythiazox, Etoxazole karşı Direnç düzeyleri Ve Direnç mekanizmalarının Belirlenmesi”. Türkiye Biyolojik Mücadele Dergisi, c. 5, sy. 2, 2016, ss. 81-89.
Vancouver Salman SY, Aydınlı F, Ay R. Predator akar Neoseiulus californicus (McGregor) (Acari: Phytoseiidae)’un dört farklı popülasyonunun spirodiclofen, hexythiazox, etoxazole karşı direnç düzeyleri ve direnç mekanizmalarının belirlenmesi. Türk. biyo. müc. derg. 2016;5(2):81-9.