Research Article
BibTex RIS Cite

Intertechnique Agreement in Epilepsy Imaging

Year 2019, , 292 - 301, 30.07.2019
https://doi.org/10.12956/tchd.541114

Abstract

Aim:To
analyze seizure semiology,
scalp video-electroencephalography,magnetic resonance imaging (MRI) and
18F-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) findings in
patients with medically refractory epilepsy,to assess the concordance rate (CR)
between clinical-electroencephalography findings (CEF) and neuroimaging studies
(NS) for localizing epileptogenic foci.

Material
and methods:
This retrospective study included
108 consecutive patients (male/female=59/49;mean age=26.6±10.5 years) who were
classified according to CEF (either temporal or extra-temporal lobe epilepsy
[TLE]) between January 2011 and January 2017.Statistical analysis was performed
using a t, Mann-Whitney U, McNemar,
or χ2 tests.

Results:Fifty-six patients had TLE (M/F=30/26,mean
age=30.1±8.9 years) and 52 had extra-TLE (M/F=29/23,mean age=22.8±10.9 years) according
to CEF.12/108 patients (M/F=6/6,mean age=28.7±10.2 years) underwent epilepsy
surgery and the mean postoperative follow-up period was 32 months.
The
highest CR between CEF and NS (76%) was found in patients with non-hippocampal
sclerosis abnormality in TLE group.In patients with malformations of cortical
development on MRI,the CR (84.2%)
between CEF and MRI was better than those between CEF and FDG-PET (52.6%) (P=0.010).The
CR between CEF and NS for TLE (48.2%) was better than for extra-TLE (9.6%) (P<0.001).No
significant difference was found in the localization of the epileptogenic focus
between MRI and FDG-PET according to the seizure outcome of patients (P=1).







Conclusions:FDG-PET
may not help in revealing epileptic region in cases with abnormal MRI
especially in malformations of cortical development.The highest CR between CEF
and NS is found in TLE patients with findings inconclusive of hippocampal
sclerosis.With low CR between CEF and NS in extra-TLE,meticulous use of
multiple modalities is necessary for accurate pre-surgical evaluation.

References

  • Nguyen DK, Spencer SS. Recent advances in the treatment of epilepsy. Arch Neurol 2003; 60: 929–935. https://doi.org/10.1001/archneur.60.7.929.
  • Cascino GD. Surgical treatment for epilepsy. Epilepsy Res 2004; 60: 179–186. https://doi.org/10.1016/j.eplepsyres.2004.07.003.
  • Cascino GD. Neuroimaging in Epilepsy: Diagnostic Strategies in Partial Epilepsy. Semin Neurol 2008; 28: 523–532. https://doi.org/10.1055/s-0028-1083687.
  • Cohen-Gadol AA, Wilhelmi BG, Collignon F, White JB, Britton JW, Cambier DM, et al. Long term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J Neurosurg 2006; 104: 513–524. https://doi.org/10.3171/jns.2006.104.4.513.
  • Seo JH, Noh BH, Lee JS, Kim DS, Lee SK, Kim TS, et al. Outcome of surgical treatment in non-lesional intractable childhood epilepsy. Seizure 2009; 18(9): 625–629. https://doi.org/10.1016/j.seizure.2009.07.007.
  • Gaillard WD, White S, Malow B, Flamini R, Weinstein S, Sato S, et al. FDG-PET in children and adolescents with partial seizures: role in epilepsy surgery evaluation. Epilepsy Res 1995; 20(1): 77–84. https://doi.org/10.1016/0920-1211(94)00065-5.
  • Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: A meta-analysis. Seizure 2007; 16(6): 509–520. https://doi.org/10.1016/j.seizure.2007.04.001.
  • O’Brien TJ, Hicks RJ, Ware R, Binns DS, Murphy M, Cook MJ. The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med 2001; 42(8): 1158–1165.
  • Muzik O, Chugani DC, Shen C, da Silva EA, Shah J, Shah A, et al. Objective method for localization of cortical asymmetries using positron emission tomography to aid surgical resection of epileptic foci. Comput Aided Surg 1998; 3(2): 74–82. https://doi.org/10.1002/(SICI)1097-0150(1998)3:2<74::AID-IGS4>3.0.CO;2-H.
  • Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et. al. International consensus classification of hippocampal. Epilepsia 2013; 54(7): 1315–1329. https://doi.org/10.1111/epi.12220.
  • Cascino GD, Jack CR Jr, Parisi JE, Sharbrough FW, Hirschorn KA, Meyer FB, et al. Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations. Ann Neurol 1991; 30(1): 31–36. https://doi.org/10.1002/ana.410300107.
  • Cendes F, Andermann F, Gloor P, Evans A, Jones Gotman M, Watson C, et al. MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy. Neurology 1993; 43(4): 719–725. https://doi.org/10.1212/WNL.43.4.719.
  • Engel J Jr, Henry TR, Risinger MW, Mazziotta JC, Sutherling WW, Levesque MF, et al. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG. Neurology 1990; 40(11): 1670–1677. https://doi.org/10.1212/WNL.40.11.1670.
  • Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 1981; 20: 273–284. https://doi.org/10.1159/000115247.
  • Blümcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C, et al. A new clinicopathological classification system for mesial temporal sclerosis. Acta Neuropathol 2007; 113(3): 235–244. https://doi.org/10.1007/s00401-006-0187-0.
  • Engel J Jr. Outcome with respect to epileptic seizures. In: Engel J Jr, editor. Surgical Treatment of the Epilepsies, New York: Raven;1987, p. 553–71.
  • French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, et al. Characteristics of medial temporal lobeepilepsy: I. Results of history and physical examination. Ann Neurol 1993; 34(6): 774–780. https://doi.org/10.1002/ana.410340604.
  • Harvey AS, Grattan-Smith JD, Desmond PM, Chow CW, Berkovic SF. Febrile seizures and hippocampal sclerosis: frequent and related findings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol 1995; 12(3): 201–206. https://doi.org/10.1016/0887-8994(95)00022-8.
  • Carne RP, O'Brien TJ, Kilpatrick CJ, MacGregor LR, Hicks RJ, Murphy MA, et al. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 2004; 127(10): 2276–2285. https://doi.org/10.1093/brain/awh257.
  • Lerner JT, Salamon N, Hauptman JS, Velasco TR, Hemb M, Wu JY, et al. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 2009; 50(6): 1310–1335. https://doi.org/10.1111/j.1528-1167.2008.01998.x.
  • Gok B, Jallo g, Hayeri R, Wahl R, Aygun N. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 2013; 55(5): 541–550. https://doi.org/10.1007/s00234-012-1121-x.
  • Wieser HG. ILAE Commission on Neurosurgery of Epilepsy: ILAE commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2004; 45(6): 695–714. https://doi.org/10.1111/j.0013-9580.2004.09004.x.
  • Kuzniecky R, Murro A, King D, Morawetz R, Smith J, Powers R, et al. Magnetic resonance imaging in childhood intractable partial epilepsies: Pathologic correlations. Neurology 1993; 43(4): 681–687. https://doi.org/10.1212/WNL.43.4.681.
  • Kim S, Salamon N, Jackson HA, Blüml S, Panigrahy A.PET imaging in pediatric neuroradiology: current and future applications. Pediatr Radiol 2010; 40: 82-96. https://doi.org/10.1007/s00247-009-1457-5.
  • Becker AJ, Blumcke I, Urbach H, Hans V, Majores M. Molecular neuropathology of epilepsy-associated glioneuronal malformations. J Neuropathol Exp Neurol 2006; 65(2): 99–108. https://doi.org/10.1097/01.jnen.0000199570.19344.33.
  • Harvey AS, Cross JH, Shinnar S, Mathern BW. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia 2008; 49(1): 146–155. https://doi.org/10.1111/j.1528-1167.2007.01421.x.
  • Spencer SS. The relative contributions of MRI, SPECT and PET imagining in epilepsy. Epilepsia 1994; 35(6): 72–89. https://doi.org/10.1111/j.1528-1157.1994.tb05990.x.
  • Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 2008; 71(20): 1594–1601. https://doi.org/10.1212/01.wnl.0000334752.41807.2f.
  • Kim SK, Na DG, Byun HS, Kim SE, Suh YL, Choi JY, et al. Focal cortical dysplasia: comparison of MRI and FDG-PET. J Comput Assist Tomogr 2000; 24(2): 296–302.
  • Lee KK, Salamon N. [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. Am J Neuroradiol 2009; 30(10): 1811–1816. https://doi.org/10.3174/ajnr.A1637.
  • Rubí S, Setoain X, Donaire A, Bargalló N, Sanmartí F, Carreño M, et al. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia 2011; 52(12): 2216–2224. https://doi.org/ 10.1111/j.1528-1167.2011.03295.x.
  • Oldan JD, Shin HW, Khandani AH, Zamora C, Benefield T, Jewells V. Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 2018; 61: 128–134. https://doi.org/10.1016/j.seizure.2018.07.022.
  • Cendes F, Caramanos Z, Andermann F, Dubeau F, Arnold DL. Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 1997; 42(5): 737–746. https://doi.org/10.1002/ana.410420510.
  • Cheon JE, Chang KH, Kim HD, Han MH, Hong SH, Seong SO, et al. MR of hippocampal sclerosis: comparison of qualitative and quantitative assessments. Am J Neuroradiol 1998; 19(3): 465–468.

Epilepsi görüntülemesinde Modaliteler Arası Uyum

Year 2019, , 292 - 301, 30.07.2019
https://doi.org/10.12956/tchd.541114

Abstract

Amaç: Medikal tedaviye
dirençli epilepsi hastalarında nöbet semiyolojisi, skalp-video elektroensefalografi,
manyetik rezonans görüntülüme (MRG) ve
18-floro-2-deoksi-glukoz
pozitron emisyon tomografi (FDG-PET) bulgularının değerlendirilmesi,
epileptojenik odağı lokalize etmede klinik-
elektroensefalografi bulguları ile nörogörüntüleme
yöntemleri arasındaki uyumun değerlendirilmesi amaçlandı.

Gereç ve Yöntemler: Retrospektif olan çalışmamız
hastane etik kuru onayı alınarak yapıldı. Çalışmaya, Ocak 2011 ile Ocak 2017
tarihleri arasında,
klinik-elektroensefalografi
bulgularına göre temporal (30 erkek, 26 kız, ortalama yaş 30,1±8,9 yıl) ve
ekstra-temporal lob epilepsi (29 erkek, 23 kız, ortalama yaş 22,8±10,9 yıl) gruplarına
ayrılan ardışık 108 hasta (59 erkek, 49 kız, ortalama yaş 26,6±10,5 yıl) dahil
edildi. Kategorik-sayısal değişkenler t, Mann-Whitney U, McNemar veya Ki-kare testi
ile analiz edildi.

Bulgular: Çalışmaya dahil edilen 108 hastanın 12’si (6 erkek, 6 kız, ortalama yaş 28,7±10,2 yıl) epilepsi
cerrahisi geçirdi ve bu hastaların operasyon sonrası ortalama takip süresi 32
aydı.
Klinik-elektroensefalografi
bulguları ile nörogörüntüleme yöntemleri arasında en yüksek uyum (%76)
hippokampal skleroz dışı anormallikler sahip temporal lob epilepsili hastalarda
saptandı. MRG’de kortikal gelişimsel anormalliklere sahip hastalardaki,
klinik-
elektroensefalografi bulguları ile MRG arasındaki uyum (%84,2),
klinik-elektroensefalografi
bulguları ile FDG-PET arasındaki uyumdan (%52,6) yüksekti
(p=0,010). Temporal lob
epilepsilerindeki k
linik-elektroensefalografi
bulguları ile nörogörüntüleme yöntemleri arasındaki uyum (%48,2),
ekstra-temporal lob epilepsilerine (%9,6) göre daha yüksekti
(p<0,001). Opere olan
hastaların takiplerine göre MRG ile FDG-PET arasında epileptojenik odağı
lokalize etmede anlamlı farklılık saptanmadı (p=1).







Sonuç: FDG-PET
epileptojenik odağın lokalize edilmesinde, özellikle MRG’de kortikal gelişimsel
anormalliklerin saptandığı hastalarda yardımcı olamayabilir.
Klinik-elektroensefalografi
bulguları ile nörogörüntüleme yöntemleri arasındaki en yüksek uyum hippokampal
skleroz dışı anormalliklere sahip temporal lob epilepsili hastalarda saptandı.
Ekstra-temporal
lob epilepsilerindeki klinik-
elektroensefalografi bulguları ile
nörogörüntüleme yöntemleri arasındaki düşük uyum, e
kstra-temporal lob
epilepsilerinin
cerrahi öncesi değerlendirilmesinde, farklı
yöntemlerin kullanılmasını gerektirmektedir.

References

  • Nguyen DK, Spencer SS. Recent advances in the treatment of epilepsy. Arch Neurol 2003; 60: 929–935. https://doi.org/10.1001/archneur.60.7.929.
  • Cascino GD. Surgical treatment for epilepsy. Epilepsy Res 2004; 60: 179–186. https://doi.org/10.1016/j.eplepsyres.2004.07.003.
  • Cascino GD. Neuroimaging in Epilepsy: Diagnostic Strategies in Partial Epilepsy. Semin Neurol 2008; 28: 523–532. https://doi.org/10.1055/s-0028-1083687.
  • Cohen-Gadol AA, Wilhelmi BG, Collignon F, White JB, Britton JW, Cambier DM, et al. Long term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J Neurosurg 2006; 104: 513–524. https://doi.org/10.3171/jns.2006.104.4.513.
  • Seo JH, Noh BH, Lee JS, Kim DS, Lee SK, Kim TS, et al. Outcome of surgical treatment in non-lesional intractable childhood epilepsy. Seizure 2009; 18(9): 625–629. https://doi.org/10.1016/j.seizure.2009.07.007.
  • Gaillard WD, White S, Malow B, Flamini R, Weinstein S, Sato S, et al. FDG-PET in children and adolescents with partial seizures: role in epilepsy surgery evaluation. Epilepsy Res 1995; 20(1): 77–84. https://doi.org/10.1016/0920-1211(94)00065-5.
  • Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: A meta-analysis. Seizure 2007; 16(6): 509–520. https://doi.org/10.1016/j.seizure.2007.04.001.
  • O’Brien TJ, Hicks RJ, Ware R, Binns DS, Murphy M, Cook MJ. The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med 2001; 42(8): 1158–1165.
  • Muzik O, Chugani DC, Shen C, da Silva EA, Shah J, Shah A, et al. Objective method for localization of cortical asymmetries using positron emission tomography to aid surgical resection of epileptic foci. Comput Aided Surg 1998; 3(2): 74–82. https://doi.org/10.1002/(SICI)1097-0150(1998)3:2<74::AID-IGS4>3.0.CO;2-H.
  • Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et. al. International consensus classification of hippocampal. Epilepsia 2013; 54(7): 1315–1329. https://doi.org/10.1111/epi.12220.
  • Cascino GD, Jack CR Jr, Parisi JE, Sharbrough FW, Hirschorn KA, Meyer FB, et al. Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations. Ann Neurol 1991; 30(1): 31–36. https://doi.org/10.1002/ana.410300107.
  • Cendes F, Andermann F, Gloor P, Evans A, Jones Gotman M, Watson C, et al. MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy. Neurology 1993; 43(4): 719–725. https://doi.org/10.1212/WNL.43.4.719.
  • Engel J Jr, Henry TR, Risinger MW, Mazziotta JC, Sutherling WW, Levesque MF, et al. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG. Neurology 1990; 40(11): 1670–1677. https://doi.org/10.1212/WNL.40.11.1670.
  • Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 1981; 20: 273–284. https://doi.org/10.1159/000115247.
  • Blümcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C, et al. A new clinicopathological classification system for mesial temporal sclerosis. Acta Neuropathol 2007; 113(3): 235–244. https://doi.org/10.1007/s00401-006-0187-0.
  • Engel J Jr. Outcome with respect to epileptic seizures. In: Engel J Jr, editor. Surgical Treatment of the Epilepsies, New York: Raven;1987, p. 553–71.
  • French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, et al. Characteristics of medial temporal lobeepilepsy: I. Results of history and physical examination. Ann Neurol 1993; 34(6): 774–780. https://doi.org/10.1002/ana.410340604.
  • Harvey AS, Grattan-Smith JD, Desmond PM, Chow CW, Berkovic SF. Febrile seizures and hippocampal sclerosis: frequent and related findings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol 1995; 12(3): 201–206. https://doi.org/10.1016/0887-8994(95)00022-8.
  • Carne RP, O'Brien TJ, Kilpatrick CJ, MacGregor LR, Hicks RJ, Murphy MA, et al. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 2004; 127(10): 2276–2285. https://doi.org/10.1093/brain/awh257.
  • Lerner JT, Salamon N, Hauptman JS, Velasco TR, Hemb M, Wu JY, et al. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 2009; 50(6): 1310–1335. https://doi.org/10.1111/j.1528-1167.2008.01998.x.
  • Gok B, Jallo g, Hayeri R, Wahl R, Aygun N. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 2013; 55(5): 541–550. https://doi.org/10.1007/s00234-012-1121-x.
  • Wieser HG. ILAE Commission on Neurosurgery of Epilepsy: ILAE commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2004; 45(6): 695–714. https://doi.org/10.1111/j.0013-9580.2004.09004.x.
  • Kuzniecky R, Murro A, King D, Morawetz R, Smith J, Powers R, et al. Magnetic resonance imaging in childhood intractable partial epilepsies: Pathologic correlations. Neurology 1993; 43(4): 681–687. https://doi.org/10.1212/WNL.43.4.681.
  • Kim S, Salamon N, Jackson HA, Blüml S, Panigrahy A.PET imaging in pediatric neuroradiology: current and future applications. Pediatr Radiol 2010; 40: 82-96. https://doi.org/10.1007/s00247-009-1457-5.
  • Becker AJ, Blumcke I, Urbach H, Hans V, Majores M. Molecular neuropathology of epilepsy-associated glioneuronal malformations. J Neuropathol Exp Neurol 2006; 65(2): 99–108. https://doi.org/10.1097/01.jnen.0000199570.19344.33.
  • Harvey AS, Cross JH, Shinnar S, Mathern BW. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia 2008; 49(1): 146–155. https://doi.org/10.1111/j.1528-1167.2007.01421.x.
  • Spencer SS. The relative contributions of MRI, SPECT and PET imagining in epilepsy. Epilepsia 1994; 35(6): 72–89. https://doi.org/10.1111/j.1528-1157.1994.tb05990.x.
  • Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 2008; 71(20): 1594–1601. https://doi.org/10.1212/01.wnl.0000334752.41807.2f.
  • Kim SK, Na DG, Byun HS, Kim SE, Suh YL, Choi JY, et al. Focal cortical dysplasia: comparison of MRI and FDG-PET. J Comput Assist Tomogr 2000; 24(2): 296–302.
  • Lee KK, Salamon N. [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. Am J Neuroradiol 2009; 30(10): 1811–1816. https://doi.org/10.3174/ajnr.A1637.
  • Rubí S, Setoain X, Donaire A, Bargalló N, Sanmartí F, Carreño M, et al. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia 2011; 52(12): 2216–2224. https://doi.org/ 10.1111/j.1528-1167.2011.03295.x.
  • Oldan JD, Shin HW, Khandani AH, Zamora C, Benefield T, Jewells V. Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 2018; 61: 128–134. https://doi.org/10.1016/j.seizure.2018.07.022.
  • Cendes F, Caramanos Z, Andermann F, Dubeau F, Arnold DL. Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 1997; 42(5): 737–746. https://doi.org/10.1002/ana.410420510.
  • Cheon JE, Chang KH, Kim HD, Han MH, Hong SH, Seong SO, et al. MR of hippocampal sclerosis: comparison of qualitative and quantitative assessments. Am J Neuroradiol 1998; 19(3): 465–468.
There are 34 citations in total.

Details

Primary Language English
Subjects ​Internal Diseases
Journal Section ORIGINAL ARTICLES
Authors

Altan Güneş 0000-0002-0365-1218

Dilek Yalnızoğlu 0000-0001-8575-9574

Ceren Günbey This is me 0000-0003-2244-828X

Bilge Volkan Salancı This is me 0000-0002-1488-6012

Figen Söylemezoğlu This is me 0000-0002-8002-5165

Burçak Biginer This is me 0000-0001-9667-3709

Eser Lay Ergün This is me

Güzide Turanlı This is me 0000-0002-2509-4651

Belkıs Erbaş This is me 0000-0001-7291-0730

Meral Topçu This is me 0000-0002-8982-3016

Serap Saygı This is me

Kader Karli Oğuz 0000-0002-6404-4403

Publication Date July 30, 2019
Submission Date March 18, 2019
Published in Issue Year 2019

Cite

APA Güneş, A., Yalnızoğlu, D., Günbey, C., Volkan Salancı, B., et al. (2019). Intertechnique Agreement in Epilepsy Imaging. Turkish Journal of Pediatric Disease, 13(4), 292-301. https://doi.org/10.12956/tchd.541114
AMA Güneş A, Yalnızoğlu D, Günbey C, Volkan Salancı B, Söylemezoğlu F, Biginer B, Lay Ergün E, Turanlı G, Erbaş B, Topçu M, Saygı S, Karli Oğuz K. Intertechnique Agreement in Epilepsy Imaging. Turkish J Pediatr Dis. July 2019;13(4):292-301. doi:10.12956/tchd.541114
Chicago Güneş, Altan, Dilek Yalnızoğlu, Ceren Günbey, Bilge Volkan Salancı, Figen Söylemezoğlu, Burçak Biginer, Eser Lay Ergün, Güzide Turanlı, Belkıs Erbaş, Meral Topçu, Serap Saygı, and Kader Karli Oğuz. “Intertechnique Agreement in Epilepsy Imaging”. Turkish Journal of Pediatric Disease 13, no. 4 (July 2019): 292-301. https://doi.org/10.12956/tchd.541114.
EndNote Güneş A, Yalnızoğlu D, Günbey C, Volkan Salancı B, Söylemezoğlu F, Biginer B, Lay Ergün E, Turanlı G, Erbaş B, Topçu M, Saygı S, Karli Oğuz K (July 1, 2019) Intertechnique Agreement in Epilepsy Imaging. Turkish Journal of Pediatric Disease 13 4 292–301.
IEEE A. Güneş, “Intertechnique Agreement in Epilepsy Imaging”, Turkish J Pediatr Dis, vol. 13, no. 4, pp. 292–301, 2019, doi: 10.12956/tchd.541114.
ISNAD Güneş, Altan et al. “Intertechnique Agreement in Epilepsy Imaging”. Turkish Journal of Pediatric Disease 13/4 (July 2019), 292-301. https://doi.org/10.12956/tchd.541114.
JAMA Güneş A, Yalnızoğlu D, Günbey C, Volkan Salancı B, Söylemezoğlu F, Biginer B, Lay Ergün E, Turanlı G, Erbaş B, Topçu M, Saygı S, Karli Oğuz K. Intertechnique Agreement in Epilepsy Imaging. Turkish J Pediatr Dis. 2019;13:292–301.
MLA Güneş, Altan et al. “Intertechnique Agreement in Epilepsy Imaging”. Turkish Journal of Pediatric Disease, vol. 13, no. 4, 2019, pp. 292-01, doi:10.12956/tchd.541114.
Vancouver Güneş A, Yalnızoğlu D, Günbey C, Volkan Salancı B, Söylemezoğlu F, Biginer B, Lay Ergün E, Turanlı G, Erbaş B, Topçu M, Saygı S, Karli Oğuz K. Intertechnique Agreement in Epilepsy Imaging. Turkish J Pediatr Dis. 2019;13(4):292-301.


The publication language of Turkish Journal of Pediatric Disease is English.


Manuscripts submitted to the Turkish Journal of Pediatric Disease will go through a double-blind peer-review process. Each submission will be reviewed by at least two external, independent peer reviewers who are experts in the field, in order to ensure an unbiased evaluation process. The editorial board will invite an external and independent editor to manage the evaluation processes of manuscripts submitted by editors or by the editorial board members of the journal. The Editor in Chief is the final authority in the decision-making process for all submissions. Articles accepted for publication in the Turkish Journal of Pediatrics are put in the order of publication taking into account the acceptance dates. If the articles sent to the reviewers for evaluation are assessed as a senior for publication by the reviewers, the section editor and the editor considering all aspects (originality, high scientific quality and citation potential), it receives publication priority in addition to the articles assigned for the next issue.


The aim of the Turkish Journal of Pediatrics is to publish high-quality original research articles that will contribute to the international literature in the field of general pediatric health and diseases and its sub-branches. It also publishes editorial opinions, letters to the editor, reviews, case reports, book reviews, comments on previously published articles, meeting and conference proceedings, announcements, and biography. In addition to the field of child health and diseases, the journal also includes articles prepared in fields such as surgery, dentistry, public health, nutrition and dietetics, social services, human genetics, basic sciences, psychology, psychiatry, educational sciences, sociology and nursing, provided that they are related to this field. can be published.