Determination of soil dominant frequency/period and H/V spectral ratio values using earthquake data: The Case of Eskisehir Province
Yıl 2024,
, 81 - 97, 30.06.2024
Kaan Hakan Çoban
,
Erdem Bayrak
Öz
In this study, it is aimed to calculate the soil dominant frequency/period and H/V spectral ratio (HVSR) values according to Nakamura method by using earthquake (M>3.5) data recorded by 14 strong ground motion stations located in Eskişehir by AFAD. In this context, 15-earthquakes of different magnitudes and distances were selected for each 14 stations. Soil dominant frequency and HVSR values were determined from the S-wave windows of earthquakes. Thus, these parameters were also determined from earthquake data, unlike calculations from microtremor data. The study results show high HVSR value (3.9-7.2) at low frequencies (0-2.0 Hz) of some stations. A multiple peak structure was observed. The lowest dominant frequency value as 0.25 Hz and the highest HVSR was 9.10. The results will contribute to earthquake hazard assessment for Eskişehir province, which has a deep sediment basin.
Kaynakça
- AFAD, 2018. Türkiye Deprem Tehlike Haritası, Afet ve Acil Durum Yönetimi Başkanlığı, Erişim adresi: https://tdth.afad.gov.tr/.
- Akbaş B., Akdeniz N., Aksay A., Altun İ.E., Balcı V., Bilginer E., Bilgiç T., Duru M., Ercan T., Gedik İ., Günay Y., Güven İ.H., Hakyemez H.Y., Konak N., Papak İ., Pehlivan Ş., Sevin M., Şenel M., Tarhan N., Turhan N., Türkecan A., Ulu Ü., Uğuz M.F., Yurtsever A., ve diğ., 2011. 1:1.250.000 ölçekli Türkiye Jeoloji Haritası, Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
- Akın Ö., 2020. Trabzon-Ortahisar İlçesi Güneyindeki Heyelanlı Alanların Zemin Özelliklerinin Aktif ve Pasif Yüzey Dalgası Yöntemleriyle İncelenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, 110s.,Trabzon.
- Akin Ö., Sayil N., 2016. Site characterization using surface wave methods in the Arsin-Trabzon province NE Turkey, Environ. Earth Sci., 75, 72.
- Alkan H., 2022. Crustal structure in and around the East Anatolian volcanic belt by using receiver functions stacking. Journal Of African Earth Sciences, 191,1-11.
- Alkan H., Akkaya İ., 2022. Deprem Kayıtlarından Elde Edilen Yatay/Düşey Spektral Oranların Ters Çözümüyle Kayma Dalga Hız Yapısının Belirlenmesi: Van Gölü Doğusu Örneği. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 233-247.
- Altunel E., Barka A., 1998. Neotectonic activity of Eskişehir fault zone between İnönü and Sultandere, Geological Bulletin of Turkey, 41(2),41-52.
- Aydın U., Pamuk E., Özer C., 2022. Investigation of soil dynamic characteristics at seismic stations using H/V spectral ratio method in Marmara Region, Turkey, Natural Hazards, 110(1), 587-606.
- Bayrak E., 2022. Investigation of soil dynamic properties using horizontal-to-vertical spectral ratio for Eastern Pontides, Northeast Turkey, Environmental Earth Sciences, 81(21), 514.
- Bayrak Y., Bayrak E., 2012. An evaluation of earthquake hazard potential for different regions in Western Anatolia using the historical and instrumental earthquake data. Pure and Applied Geophysics, 169(10), 1859-1873.
- Bayrak E., Coban K.H., 2023. Evaluation of 08 August 2019 Bozkurt (Denizli-Turkey, Mw 6.0) earthquake in terms of strong ground-motion parameters and Coulomb stress changes, Environmental Earth Sciences, 82(20), 470.
- Bignardi S., Mantovani A., Zeid N.A., 2016. OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion, Computers & Geosciences, 93, 103-113.
- Büyüksaraç A., Bektaş Ö., Yılmaz H., Arısoy M.Ö., 2013. Preliminary seismic microzonation of Sivas city (Turkey) using microtremor and refraction microtremor (ReMi) measurements, Journal of Seismology, 17(2), 425-435.
- Çoban K.H., Sayıl N., 2018. Investigation of the seismicity of East Anatolian fault zone (EAFZ) according to Poisson and Exponential distribution models, Düzce University Journal of Science & Technology, 6(2), 491-500.
- Çoban K.H., Sayıl N., 2020a. Conditional Probabilities of Hellenic Arc Earthquakes Based on Different Distribution Models, Pure Appl Geophys, 177, 5133-5145.
- Çoban K.H., Sayıl N., 2020b. Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones, Arabian Journal of Geosciences, 13, 971.
- Di Alessandro C., Bonilla L.F., Boore D.M., Rovelli A., Scotti O., 2012. Predominant-period site classification for response spectra prediction equations in Italy. Bulletin of the Seismological Society of America, 102(2), 680-695.
- Diagourtas D., Tzanis A., Makropoulos K., 2002. Comparative study of microtremor analysis methods, Earthquake Microzoning, 2463-2479.
- Dikmen Ü., Arısoy M.Ö., Akkaya I., 2010. Offset and linear spread geometry in the MASW method, Journal of Geophysics and Engineering, 7(2), 211-222.
- Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş., Şaroğlu F., 2013. Açıklamalı Türkiye Diri Fay Haritası Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara,Türkiye. ISBN: 978-605-5310-56-1.
- Gözler M.Z., Cevher F., Ergül E., Asutay H.J., 1996. Orta Sakarya ve güneyinin jeolojisi, MTA Rapor No: 9973, 87 s.
- Kanai K., Tanaka A.T., 1961. On Microtremors VII, Bulletin of the Earthquake Research Institute, 39, 97-114.
- Ketin İ., 1968. Relations between general tectonic features and the main earthquake regions of Turkey, Bull. Min. Res. Exp., 71, 63–67.
- Kinscher J., Krüger F., Woith H., Lühr B. G., Hintersberger E., Irmak T.S., Baris S., 2013. Seismotectonics of the Armutlu Peninsula (Marmara Sea, NW Turkey) from geological field observation and regional moment tensor inversion, Tectonophysics, 608, 980-995.
- Le Pichon X., Chamot-Rooke N., Rangin C., Sengor A.M.C., 2003. The North Anatolian Fault in the Sea of Marmara, J. Geophys Res., 108, 2179.
- Lermo J., Chávez-García F.J., 1993. Site effect evaluation using spectral ratios with only one station, Bulletin of the Seismological Society of America, 83(5),1574-1594.
- Livaoğlu H., Şentürk E., Sertçelik F., 2021. A Comparative Study of Response and Fourier Spectral Ratios on Classifying Sites, Pure and Applied Geophysics, 178(5), 1745-1759.
- McKenzie D., 1972. Active tectonics of the Mediterranean region, Geophys J. R. Astr. Soc., 30, 109-185.
- Mihaylov D., El Naggar M.H., Dineva S., 2016. Separation of high‐and low‐level ambient noise for HVSR: Application in city conditions for Greater Toronto Area. Bulletin of the Seismological Society of America, 106(5), 2177-2184.
- Molnar S., Ventura C.E., Boroschek R., Archila M., 2015. Site characterization at Chilean strong-motion stations: Comparison of downhole and microtremor shear-wave velocity methods. Soil Dynamics and Earthquake Engineering, 79, 22-35.
- Molnar S., Sirohey A., Assaf J., Bard P.Y., Castellaro S., Cornou C., Cox B., Guillier B., Hassani B., Kawase H., Matsushima S., Sanchez-Sesma F.J., Yong A., 2022. A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method, Journal of Seismology, 26, 653-685, https://doi.org/10.1007/s10950-021-10062-9.
- Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Q. Rep. Railw. Tech. Res. Inst., 30(1), 25-33.
- Omori F., 1908. On micro-tremors, Bull. Earth Inv. Com., 2(I–II), 1-6.
- Öztürk S., 2018. Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value, Front Earth Sci., 12, 215-236.
- Pamuk E., 2019. Investigation of the local site effects in the northern part of the eastern Anatolian region, Turkey, Bollettino di Geofisica Teorica ed Applicata, 60(4).
- Pamuk E., Özer C., 2020. The Site Effect Investigation with Using Horizontal-to-Vertical Spectral Ratio Method on Earthquake Data, South of Turkey, Geotecton., 54, 563-576.
- Panzera F., Romagnoli G., Tortorici G., D'Amico S., Rizza M., Catalano S., 2019. Integrated use of ambient vibrations and geological methods for seismic microzonation, Journal of Applied Geophysics, 170, 103820.
- Polat O., Gök E., Yilmaz D., 2008. Earthquake hazard of Aegean Extension Region, Turkey, Turk. J. Earth Sci., 17, 593-614.
- Rezaei S., Shooshpasha I., Rezaei H., 2020. Evaluation of ground dynamic characteristics using ambient noise measurements in a landslide area. Bull. of Eng. Geo. and the Env., 79, 1749-1763.
- SESAME WP12, 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations-Measurements, processing and interpretation, SESAME European research project, Deliverable D23. 12., Project No. EVG1-CT-2000-00026 SESAME, 62 pp.
- Seyitoğlu G., Ecevitoğlu G.B., Kaypak B., Güney Y., Tün M., Esat K., Avdan U., Temel A., Çabuk A., Telsiz S., Aldaş G.G.U., 2015. Determining the main strand of the Eskişehir strike-slip fault zone using subsidiary structures and seismicity: a hypothesis tested by seismic reflection studies, Turk. J. Earth Sci, 24(1), 1-20, https://doi.org/10.3906/yer-1406-5.
- Şaroğlu F., Emre Ö., Doğan A., Yıldırım C., 2005. Eskişehir Fay Zonu ve Deprem Potansiyeli, Eskişehir Fay Zonu ve İlişkili Sistemlerin Depremselliği Çalıştayı, Genişletilmiş Bildiri Özleri Kitabı, Eskişehir, 11-11.
- Şengör A.M.C., Görür N., Şaroğlu F., 1985. Strike-slip deformation basin formation and sedimentation: strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N, editors. Strike- Slip Faulting and Basin Formation. Tulsa, OK, USA: SEPM, pp.227–264.
- Şenkaya M., Karslı H., Socco L.V., Foti S., 2020. Obtaining reliable S‐wave velocity depth profile by joint inversion of geophysical data: the combination of active surface‐wave, seismic refraction and electric sounding data, Near Surface Geophysics, 18(6), 659-682.
- TADAS, 2023. Türkiye İvme Veritabanı ve Analiz Sistemi, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Dairesi Başkanlığı, Erişim adresi: https://tadas.afad.gov.tr/login.
- Tün M., Ayday C., 2018. Investigation of correlations between shear wave velocities and CPT data: a case study at Eskisehir in Turkey, Bulletin of Engineering Geology and the Environment, 77, 225-236.
- Tün M., Pekkan E., Tunc S., 2015. Yer Sarsıntı Haritalarının Üretilmesinde Sismik Ağ Yapısı: Eskişehir Örneği, Harita Teknolojileri Elektronik Dergisi, 7(3), 1-14.
- Tün M., Pekkan E., Özel O., Guney Y., 2016. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophysical Journal International, 207(1), 589-607.
- Tün M., Pekkan E., Mutlu S., 2022. The depth of alluvial sediments and subsurface profiling along the Eskişehir Basin in Central Turkey using microtremor observations, Bull. Eng. Geol. Environ., 81.
- Wathelet M., Chatelain J.L., Cornou C., Giulio G.D., Guillier B., Ohrnberger M., Savvaidis A., 2020. Geopsy: A user‐friendly open‐source tool set for ambient vibration processing, Seismological Research Letters, 91(3), 1878-1889.
- Yalçınkaya E., Alp H., Özel O., Görgün E., Martino S., Lenti L., Coccia S., 2016. Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey, Journal of Applied Geophysics, 134:23-35.
- Yamanaka H., Özmen Ö.T., Chimoto K., Alkan M.A., Tün M., Pekkan E., Özel O., Polat O.D., Nurlu M., 2018. Exploration of S-wave velocity profiles at strong motion stations in Eskisehir, Turkey, using microtremor phase velocity and S-wave amplification, Journal of Seismology, 22, 1127-1137.
- Zare M., Bard P.Y., 2002. Strong motion dataset of Turkey: data processing and site classification, Soil Dynamics and Earthquake Engineering, 22(8), 703-718.
Deprem verileri kullanılarak zemin hakim frekans/periyot ve H/V spektral oran değerlerinin belirlenmesi: Eskişehir İli Örneği
Yıl 2024,
, 81 - 97, 30.06.2024
Kaan Hakan Çoban
,
Erdem Bayrak
Öz
Bu çalışmada AFAD tarafından Eskişehir ili sınırları içeresinde konumlandırılan 14 kuvvetli yer hareketi istasyonun farklı zamanlarda kaydettiği deprem (M>3.5) verileri kullanılarak Nakamura Yöntemine göre zemin hakim frekans, zemin hakim periyot ve H/V spektral oran değerlerinin hesaplanması amaçlanmıştır. Bu bağlamda 14 istasyonun her biri için farklı büyüklük ve uzaklıktaki 15 adet deprem seçilmiştir. Bu depremlerin S-dalgası pencerelerinden zemin hakim frekans ve H/V spektral oran değerleri belirlenmiş ve ortalama H/V spektral oran eğrileri oluşturulmuştur. Böylece, mikrotremor verileri yapılan hesaplamalardan farklı olarak deprem verileri üzerinden de bu parametreler belirlenmiştir. Çalışma sonuçlarında bazı istasyonların düşük frekanslarında (0-2.0 Hz) yüksek H/V değerleri (3.9-7.2) görülmektedir. Bazı istasyonlarda çoklu pik yapısı gözlenmiştir. En düşük hakim frekans değeri 0.25 Hz ve en yüksek H/V oranı 9.10 olarak hesaplanmıştır. Çalışma sonuçları derin sediman yapısına sahip Eskişehir ili için deprem tehlike değerlendirme çalışmalarına katkı sağlayacaktır.
Teşekkür
Deprem verileri Türkiye Cumhuriyeti Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı Deprem Dairesi Başkanlığı (AFAD) tarafından oluşturulan Türkiye İvme Veritabanı ve Analiz Sistemi (TADAS) üzerinden alınmıştır. Faylar ve Jeoloji bilgisi Maden Tetkik ve Arama Genel Müdürlüğü (MTA) Jeoloji harita görüntüleyicisi kullanılarak sayısallaştırılmaktadır (Akbaş vd. 2011; Emre vd. 2013 ). Yazarlar editöre, hakemlere ve veri sağlayan kurumlara teşekkürlerini sunar.
Kaynakça
- AFAD, 2018. Türkiye Deprem Tehlike Haritası, Afet ve Acil Durum Yönetimi Başkanlığı, Erişim adresi: https://tdth.afad.gov.tr/.
- Akbaş B., Akdeniz N., Aksay A., Altun İ.E., Balcı V., Bilginer E., Bilgiç T., Duru M., Ercan T., Gedik İ., Günay Y., Güven İ.H., Hakyemez H.Y., Konak N., Papak İ., Pehlivan Ş., Sevin M., Şenel M., Tarhan N., Turhan N., Türkecan A., Ulu Ü., Uğuz M.F., Yurtsever A., ve diğ., 2011. 1:1.250.000 ölçekli Türkiye Jeoloji Haritası, Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
- Akın Ö., 2020. Trabzon-Ortahisar İlçesi Güneyindeki Heyelanlı Alanların Zemin Özelliklerinin Aktif ve Pasif Yüzey Dalgası Yöntemleriyle İncelenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, 110s.,Trabzon.
- Akin Ö., Sayil N., 2016. Site characterization using surface wave methods in the Arsin-Trabzon province NE Turkey, Environ. Earth Sci., 75, 72.
- Alkan H., 2022. Crustal structure in and around the East Anatolian volcanic belt by using receiver functions stacking. Journal Of African Earth Sciences, 191,1-11.
- Alkan H., Akkaya İ., 2022. Deprem Kayıtlarından Elde Edilen Yatay/Düşey Spektral Oranların Ters Çözümüyle Kayma Dalga Hız Yapısının Belirlenmesi: Van Gölü Doğusu Örneği. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 233-247.
- Altunel E., Barka A., 1998. Neotectonic activity of Eskişehir fault zone between İnönü and Sultandere, Geological Bulletin of Turkey, 41(2),41-52.
- Aydın U., Pamuk E., Özer C., 2022. Investigation of soil dynamic characteristics at seismic stations using H/V spectral ratio method in Marmara Region, Turkey, Natural Hazards, 110(1), 587-606.
- Bayrak E., 2022. Investigation of soil dynamic properties using horizontal-to-vertical spectral ratio for Eastern Pontides, Northeast Turkey, Environmental Earth Sciences, 81(21), 514.
- Bayrak Y., Bayrak E., 2012. An evaluation of earthquake hazard potential for different regions in Western Anatolia using the historical and instrumental earthquake data. Pure and Applied Geophysics, 169(10), 1859-1873.
- Bayrak E., Coban K.H., 2023. Evaluation of 08 August 2019 Bozkurt (Denizli-Turkey, Mw 6.0) earthquake in terms of strong ground-motion parameters and Coulomb stress changes, Environmental Earth Sciences, 82(20), 470.
- Bignardi S., Mantovani A., Zeid N.A., 2016. OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion, Computers & Geosciences, 93, 103-113.
- Büyüksaraç A., Bektaş Ö., Yılmaz H., Arısoy M.Ö., 2013. Preliminary seismic microzonation of Sivas city (Turkey) using microtremor and refraction microtremor (ReMi) measurements, Journal of Seismology, 17(2), 425-435.
- Çoban K.H., Sayıl N., 2018. Investigation of the seismicity of East Anatolian fault zone (EAFZ) according to Poisson and Exponential distribution models, Düzce University Journal of Science & Technology, 6(2), 491-500.
- Çoban K.H., Sayıl N., 2020a. Conditional Probabilities of Hellenic Arc Earthquakes Based on Different Distribution Models, Pure Appl Geophys, 177, 5133-5145.
- Çoban K.H., Sayıl N., 2020b. Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones, Arabian Journal of Geosciences, 13, 971.
- Di Alessandro C., Bonilla L.F., Boore D.M., Rovelli A., Scotti O., 2012. Predominant-period site classification for response spectra prediction equations in Italy. Bulletin of the Seismological Society of America, 102(2), 680-695.
- Diagourtas D., Tzanis A., Makropoulos K., 2002. Comparative study of microtremor analysis methods, Earthquake Microzoning, 2463-2479.
- Dikmen Ü., Arısoy M.Ö., Akkaya I., 2010. Offset and linear spread geometry in the MASW method, Journal of Geophysics and Engineering, 7(2), 211-222.
- Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş., Şaroğlu F., 2013. Açıklamalı Türkiye Diri Fay Haritası Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara,Türkiye. ISBN: 978-605-5310-56-1.
- Gözler M.Z., Cevher F., Ergül E., Asutay H.J., 1996. Orta Sakarya ve güneyinin jeolojisi, MTA Rapor No: 9973, 87 s.
- Kanai K., Tanaka A.T., 1961. On Microtremors VII, Bulletin of the Earthquake Research Institute, 39, 97-114.
- Ketin İ., 1968. Relations between general tectonic features and the main earthquake regions of Turkey, Bull. Min. Res. Exp., 71, 63–67.
- Kinscher J., Krüger F., Woith H., Lühr B. G., Hintersberger E., Irmak T.S., Baris S., 2013. Seismotectonics of the Armutlu Peninsula (Marmara Sea, NW Turkey) from geological field observation and regional moment tensor inversion, Tectonophysics, 608, 980-995.
- Le Pichon X., Chamot-Rooke N., Rangin C., Sengor A.M.C., 2003. The North Anatolian Fault in the Sea of Marmara, J. Geophys Res., 108, 2179.
- Lermo J., Chávez-García F.J., 1993. Site effect evaluation using spectral ratios with only one station, Bulletin of the Seismological Society of America, 83(5),1574-1594.
- Livaoğlu H., Şentürk E., Sertçelik F., 2021. A Comparative Study of Response and Fourier Spectral Ratios on Classifying Sites, Pure and Applied Geophysics, 178(5), 1745-1759.
- McKenzie D., 1972. Active tectonics of the Mediterranean region, Geophys J. R. Astr. Soc., 30, 109-185.
- Mihaylov D., El Naggar M.H., Dineva S., 2016. Separation of high‐and low‐level ambient noise for HVSR: Application in city conditions for Greater Toronto Area. Bulletin of the Seismological Society of America, 106(5), 2177-2184.
- Molnar S., Ventura C.E., Boroschek R., Archila M., 2015. Site characterization at Chilean strong-motion stations: Comparison of downhole and microtremor shear-wave velocity methods. Soil Dynamics and Earthquake Engineering, 79, 22-35.
- Molnar S., Sirohey A., Assaf J., Bard P.Y., Castellaro S., Cornou C., Cox B., Guillier B., Hassani B., Kawase H., Matsushima S., Sanchez-Sesma F.J., Yong A., 2022. A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method, Journal of Seismology, 26, 653-685, https://doi.org/10.1007/s10950-021-10062-9.
- Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Q. Rep. Railw. Tech. Res. Inst., 30(1), 25-33.
- Omori F., 1908. On micro-tremors, Bull. Earth Inv. Com., 2(I–II), 1-6.
- Öztürk S., 2018. Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value, Front Earth Sci., 12, 215-236.
- Pamuk E., 2019. Investigation of the local site effects in the northern part of the eastern Anatolian region, Turkey, Bollettino di Geofisica Teorica ed Applicata, 60(4).
- Pamuk E., Özer C., 2020. The Site Effect Investigation with Using Horizontal-to-Vertical Spectral Ratio Method on Earthquake Data, South of Turkey, Geotecton., 54, 563-576.
- Panzera F., Romagnoli G., Tortorici G., D'Amico S., Rizza M., Catalano S., 2019. Integrated use of ambient vibrations and geological methods for seismic microzonation, Journal of Applied Geophysics, 170, 103820.
- Polat O., Gök E., Yilmaz D., 2008. Earthquake hazard of Aegean Extension Region, Turkey, Turk. J. Earth Sci., 17, 593-614.
- Rezaei S., Shooshpasha I., Rezaei H., 2020. Evaluation of ground dynamic characteristics using ambient noise measurements in a landslide area. Bull. of Eng. Geo. and the Env., 79, 1749-1763.
- SESAME WP12, 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations-Measurements, processing and interpretation, SESAME European research project, Deliverable D23. 12., Project No. EVG1-CT-2000-00026 SESAME, 62 pp.
- Seyitoğlu G., Ecevitoğlu G.B., Kaypak B., Güney Y., Tün M., Esat K., Avdan U., Temel A., Çabuk A., Telsiz S., Aldaş G.G.U., 2015. Determining the main strand of the Eskişehir strike-slip fault zone using subsidiary structures and seismicity: a hypothesis tested by seismic reflection studies, Turk. J. Earth Sci, 24(1), 1-20, https://doi.org/10.3906/yer-1406-5.
- Şaroğlu F., Emre Ö., Doğan A., Yıldırım C., 2005. Eskişehir Fay Zonu ve Deprem Potansiyeli, Eskişehir Fay Zonu ve İlişkili Sistemlerin Depremselliği Çalıştayı, Genişletilmiş Bildiri Özleri Kitabı, Eskişehir, 11-11.
- Şengör A.M.C., Görür N., Şaroğlu F., 1985. Strike-slip deformation basin formation and sedimentation: strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N, editors. Strike- Slip Faulting and Basin Formation. Tulsa, OK, USA: SEPM, pp.227–264.
- Şenkaya M., Karslı H., Socco L.V., Foti S., 2020. Obtaining reliable S‐wave velocity depth profile by joint inversion of geophysical data: the combination of active surface‐wave, seismic refraction and electric sounding data, Near Surface Geophysics, 18(6), 659-682.
- TADAS, 2023. Türkiye İvme Veritabanı ve Analiz Sistemi, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Dairesi Başkanlığı, Erişim adresi: https://tadas.afad.gov.tr/login.
- Tün M., Ayday C., 2018. Investigation of correlations between shear wave velocities and CPT data: a case study at Eskisehir in Turkey, Bulletin of Engineering Geology and the Environment, 77, 225-236.
- Tün M., Pekkan E., Tunc S., 2015. Yer Sarsıntı Haritalarının Üretilmesinde Sismik Ağ Yapısı: Eskişehir Örneği, Harita Teknolojileri Elektronik Dergisi, 7(3), 1-14.
- Tün M., Pekkan E., Özel O., Guney Y., 2016. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophysical Journal International, 207(1), 589-607.
- Tün M., Pekkan E., Mutlu S., 2022. The depth of alluvial sediments and subsurface profiling along the Eskişehir Basin in Central Turkey using microtremor observations, Bull. Eng. Geol. Environ., 81.
- Wathelet M., Chatelain J.L., Cornou C., Giulio G.D., Guillier B., Ohrnberger M., Savvaidis A., 2020. Geopsy: A user‐friendly open‐source tool set for ambient vibration processing, Seismological Research Letters, 91(3), 1878-1889.
- Yalçınkaya E., Alp H., Özel O., Görgün E., Martino S., Lenti L., Coccia S., 2016. Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey, Journal of Applied Geophysics, 134:23-35.
- Yamanaka H., Özmen Ö.T., Chimoto K., Alkan M.A., Tün M., Pekkan E., Özel O., Polat O.D., Nurlu M., 2018. Exploration of S-wave velocity profiles at strong motion stations in Eskisehir, Turkey, using microtremor phase velocity and S-wave amplification, Journal of Seismology, 22, 1127-1137.
- Zare M., Bard P.Y., 2002. Strong motion dataset of Turkey: data processing and site classification, Soil Dynamics and Earthquake Engineering, 22(8), 703-718.