Araştırma Makalesi
BibTex RIS Kaynak Göster

Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi

Yıl 2024, , 471 - 487, 30.12.2024
https://doi.org/10.46464/tdad.1486701

Öz

Gömülü boru hatlarının sismik performansı, afetler sonrasında boruların servisini sürdürmesi açısından kritik bir öneme sahiptir. Şubat 2011’deki 6.2 Mw büyüklüğündeki Christchurch depremi içme suyu dağıtım şebekesinde büyük hasarlar oluşmasına sebep olmuştur. Bu çalışmada asbestli çimento boru (AC) hattı üzerinde gerçekleştirilen nümerik vaka analizi ile yüzey dalgalarının boru hattı üzerinde oluşturduğu etkiler incelenmiştir. Gömülü boru hatları, yüzey dalgası yayılma etkileri altında hem görece rijit hem de esnek davranışlar sergileyebilirken, bu çalışma rijit özellik gösteren asbestli çimento boruların davranışlarına odaklanmaktadır. Sonlu elemanlar yöntemine dayanan Plaxis 2D ile 2011 Christchurch depreminde hasar meydana gelen AC tipi boru üzerinde dinamik vaka analizi uygulanmış ve elde edilen sonuçlar, Ghirmay (2016) tarafından AC boru hatları üzerinde uygulanan yükleme deneyi sonuçları ile karşılaştırılmıştır.

Etik Beyan

Araştırma kapsamında yer alan bilgiler; herhangi bir kişiye, kuruma, ekipmana çıkar sağlamayı veya kişisel/kurumsal menfaat kazandırmayı amaçlamamaktadır. Aynı şekilde çalışmada yer alan hususlar objektif değerlendirme sınırları dışına çıkarak herhangi bir şekilde kişi, kurum, kuruluş nezdinde zarara, kastı aşan kötü niyetli yoruma ya da itibar kaybına yol açmamaktadır.

Destekleyen Kurum

TUBITAK, NZGD (New Zealand Geotechnical Database) ve Pamukkale Üniversitesi Bilimsel Araştırma Koordinatörlüğü

Proje Numarası

2019FEBE013

Teşekkür

Bu çalışma 2019FEBE013 proje nosu ile Pamukkale Üniversitesi Bilimsel Araştırma Koordinatörlüğü ve Tübitak Bilim İnsanı Destek Programları Başkanlığı tarafından desteklenmiştir.

Kaynakça

  • Ansal A., Kurtulus A., Tonuk G., 2008. Damage to water and sewage pipelines in Adapazari during 1999 Kocaeli, Turkey earthquake, Sixth International Conference on Case Histories in Geotechnical Engineering, 5. 11-16 August 2008, Arlington, Virginia, Erişim adresi: https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=2757&context=icchge.
  • Argyrou C., Bouziou D., O’Rourke T.D., Stewart H.E., 2018. Retrofitting pipelines with cured-in-place linings for earthquake-induced ground deformations, Soil Dynamics and Earthquake Engineering, 115, 156-168.
  • Ayala A.G., O'Rourke M., 1989. Effects of the 1985 Michoacan earthquake on water systems and other buried lifelines in Mexico, Technical Report NCEER-89-0009, Erişim adresi: https://www.buffalo.edu/mceer/catalog.host.html/content/shared/www/mceer/publications/NCEER-89-0009.detail.html.
  • Barenberg M.E., 1988. Correlation of pipeline damage with ground motions, Journal of Geotechnical Engineering, 114(6), 706-711.
  • Barton N.A., Farewell T.S., Hallett S.H., Acland T.F., 2019. Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks, Water research, 164, 114926.
  • Beavan J., Levick S., Lee J., Jones K., 2012. Ground displacements and dilatational strains caused by the 2010-2011 Canterbury earthquakes, GNS Science Consultancy Report 2012/67. 59 p.
  • Brinkgreve R.B.J., Engin E., Engin H.K., 2010. Validation of empirical formulas to derive model parameters for sands, Numerical Methods in Geotechnical Engineering, 137, 142.
  • Ceylan M., 2020., İçme suyu boru hasarlarının detaylı incelenmesi: Christchurch depremi örneği, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsu, Denizli, 99 s.
  • Chen W.W., Shih B.J., Chen Y.C., Hung J.H., Hwang H.H., 2002. Seismic response of natural gas and water pipelines in the Ji-Ji earthquake, Soil Dynamics and Earthquake Engineering, 22(9-12), 1209-1214.
  • Cubrinovski M., Hughes M., Bradley B., Noonan J., Hopkins R., McNeill S., English G., 2014. Performance of horizontal infrastructure in Christchurch City through the 2010-2011 Canterbury earthquake sequence, Technical Report, Erişim Adresi: http://hdl.handle.net/10092/9492.
  • Darendeli M.B., 2001. Development of a new family of normalized modulus reduction and material damping curves, Ph.D. Dissertation, University of Texas Austin, USA.
  • EERI, 1999. The Chi-Chi, Taiwan Earthquake of September 21, 1999, Earthquake Engineering Research Institute, Learning From Earthquakes, Report, Erişim Adresi: https://learningfromearthquakes.org/lfe/pdf/Taiwan_ChiChi_Article_Oct99.pdf.
  • EERI, 2023. February 6, 2023 Türkiye Earthquakes: Report on Geoscience and Engineering Impacts, Oakland, CA: Earthquake Enginering Research Institute. https://doi.org/doi:10.18118/G6PM34.
  • El Hmadi K., O'Rourke M.J., 1988. Soil springs for buried pipeline axial motion, Journal of Geotechnical Engineering, 114(11), 1335-1339.
  • Ghirmay A., 2016. Asbestos cement pipe condition assessment and remaining service life prediction, MSc Thesis, University of Arkansas, Department of Civil Engineering, Fayetteville, 109 p.
  • GTÜ, 2023. 6 Şubat 2023 Maraş Depremleri (Pazarcık Mw7.7 ve Elbistan Mw7.6) Sonrasında Kuvvetli Yer Hareketi, Geoteknik, üst Yapı ve Altyapılara ilişkin Saha Gözlemleri Ön inceleme Raporu 7 Mart 2023 Gebze Teknik Üniversitesi/MARTEST 2023-01. Marmara Afetlerle Baş Edebilir Yapılar için Uygulama ve Araştırma Merkezi (MARTEST), Erişim Adresi: https://www.gtu.edu.tr/fileman/Files/UserFiles/insaat_muhendisligi_bolumu/GTU_Maras%20Depremleri%20Deg%CC%86erlendirme%20Raporu_Final_07.03.2023.pdf.
  • Hudson M., Idriss I., Beirkae M., 1994. QUAD4M User’S Manual.
  • Isenberg J., 1978. Seismic performance of underground water pipelines in the southeast San Fernando Valley in the 1971 San Fernando earthquake. National Science Foundation, Washington, D.C, Technical Report No: PFR 78-15049, Erişim Adresi: https://nehrpsearch.nist.gov/article/PB-293%20562/5/XAB.
  • Kaya E.S., Uckan E., O'Rourke M.J., Karamanos S.A., Akbas B., Cakir F., Cheng Y., 2017. Failure analysis of a welded steel pipe at Kullar fault crossing, Engineering Failure Analysis, 71, 43-62.
  • McGann C.R., Bradley B.A., Wotherspoon L.M., Cox B.R., 2015. Comparison of a Christchurch-specific CPT-Vs correlation and Vs derived from surface wave analysis for strong motion station velocity characterisation, Bulletin of the New Zealand Society for Earthquake Engineering, 48(2), 81-91.
  • Nacaroğlu E., 2017, Sismik Etkiler Altında Gömülü Boru Hatlarında Hasar Analizleri, Doktora Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli.
  • Nair G.S., Dash S.R., Mondal G., 2018. Review of pipeline performance during earthquakes since 1906, Journal of Performance of Constructed Facilities, 32(6), 04018083.
  • NZGD, 2024. The New Zealand Geotechnical Database, Erişim adresi: https://www.nzgd.org.nz/Registration/Login.aspx?ReturnUrl=%2FARCGISMapViewer%2Fmapviewer.aspx.
  • O’Rourke T.D., Jeon S.S., Toprak S., Cubrinovski M., Jung J.K., 2012. Underground lifeline system performance during the Canterbury earthquake sequence, In Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal Vol. 24.
  • O’Rourke T.D., Jeon S.S., Toprak S., Cubrinovski M., Hughes M., Ballegooy S., Bouziou D., 2014. Earthquake response of underground pipeline networks in Christchurch, NZ, Earthquake Spectra, 30(1), 183–204.
  • PEER, 2013. PEER (Pacific Earthquake Engineering Research Center ) NGA-West2 Database, Timothy D. Ancheta, Robert B. Darragh, Jonathan P. Stewart, Emel Seyhan, Walter J. Silva, Brian S.J. Chiou, Katie E. Wooddell, Robert W. Graves, Albert R. Kottke, David M. Boore, Tadahiro Kishida, and Jennifer L. Donahue. May 2013., Erişim Adresi: https://ngawest2.berkeley.edu/.
  • PLAXIS, 2018. PLAXIS 2D Reference Manual. Bentley Systems International Limited, Dublin.
  • Shih B.J., Chang C.H., 2006. Damage survey of water supply systems and fragility curve of PVC water pipelines in the Chi–Chi Taiwan earthquake, Natural Hazards, 37, 71-85.
  • Toprak S., Koc A.C., Cetin O.A., Nacaroglu E., 2008. Assessment of buried pipeline response to earthquake loading by using GIS, In Proc., 14th World Conf. on Earthquake Engineering (pp. 1-8).
  • Toprak S., Nacaroglu E., Koc A.C., O’Rourke T.D., Hamada M., Cubrinovski M., Van Ballegooy S., 2018. Comparison of horizontal ground displacements in Avonside area, Christchurch from air photo, LiDAR and satellite measurements regarding pipeline damage assessment, Bulletin of Earthquake Engineering, 16, 4497-4514.
  • Toprak S., Nacaroglu E., Van Ballegooy S., Koc A.C., Jacka M., Manav Y., Torvelainen E., O'Rourke T.D., 2019. Segmented pipeline damage predictions using liquefaction vulnerability parameters, Soil Dynamics and Earthquake Engineering, 125, 105758.
  • Toprak S., Taskin F., 2007. Estimation of earthquake damage to buried pipelines caused by ground shaking, Natural Hazards, 40, 1-24.
  • Toprak S., Wham B.P., Nacaroglu E., Ceylan M., Dal O., Senturk A.E., 2024, Impact of Seismic Geohazards on water supply systems and pipeline performance: Insights from the 2023 Kahramanmaras Earthquakes, Engineering Geology, 340, 107681. https://doi.org/10.1016/j.enggeo.2024.107681.
  • Uckan E., Aksel M., Atas O., Toprak S., Kaya E.S., 2024. The performance of transmission pipelines on February 6th, 2023 Kahramanmaras earthquake: a series of case studies, Bulletin of Earthquake Engineering, pp.1-20.
  • Vasseghi A., Haghshenas E., Soroushian A., Rakhshandeh M., 2021. Failure analysis of a natural gas pipeline subjected to landslide, Engineering Failure Analysis, 119, 105009.
  • Vazouras P., Karamanos S.A., Dakoulas P., 2010. Finite element analysis of buried steel pipelines under strike-slip fault displacements, Soil Dynamics and Earthquake Engineering, 30(11), 1361-1376.
  • Wang B., 2000. The damage report of public water system after the Ji-Ji earthquake, [In Chinese.] Water Supply, 19 (1), 64–81.
  • Wham B.P., Davis C.A., Rajah S., 2019. Axial connection force capacity required for buried pipelines subjected to seismic permanent ground displacement, In Pipelines 2019 (pp. 299-308), Reston, VA: American Society of Civil Engineers.

Buried Pipe Behavior subjected to Seismic Effects: Christchurch Earthquake Case Study

Yıl 2024, , 471 - 487, 30.12.2024
https://doi.org/10.46464/tdad.1486701

Öz

The seismic performance of buried pipelines is critical to their continued service after disasters. The 6.2 Mw Christchurch earthquake in February 2011 caused extensive damage to the drinking water distribution network. In this study, the effects of surface waves on the pipeline were investigated through a numerical case study on an asbestos cement (AC) pipeline. While buried pipelines can exhibit both relatively rigid and flexible behavior under surface wave propagation effects, this study focuses on the behavior of asbestos cement pipes, which exhibit rigid characteristics. Using Plaxis 2D based on the finite element method, a dynamic case analysis was performed on the AC type pipe damaged in the 2011 Christchurch earthquake and the results were compared with the results of the axial loading test conducted by Ghirmay (2016) on AC pipelines.

Proje Numarası

2019FEBE013

Kaynakça

  • Ansal A., Kurtulus A., Tonuk G., 2008. Damage to water and sewage pipelines in Adapazari during 1999 Kocaeli, Turkey earthquake, Sixth International Conference on Case Histories in Geotechnical Engineering, 5. 11-16 August 2008, Arlington, Virginia, Erişim adresi: https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=2757&context=icchge.
  • Argyrou C., Bouziou D., O’Rourke T.D., Stewart H.E., 2018. Retrofitting pipelines with cured-in-place linings for earthquake-induced ground deformations, Soil Dynamics and Earthquake Engineering, 115, 156-168.
  • Ayala A.G., O'Rourke M., 1989. Effects of the 1985 Michoacan earthquake on water systems and other buried lifelines in Mexico, Technical Report NCEER-89-0009, Erişim adresi: https://www.buffalo.edu/mceer/catalog.host.html/content/shared/www/mceer/publications/NCEER-89-0009.detail.html.
  • Barenberg M.E., 1988. Correlation of pipeline damage with ground motions, Journal of Geotechnical Engineering, 114(6), 706-711.
  • Barton N.A., Farewell T.S., Hallett S.H., Acland T.F., 2019. Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks, Water research, 164, 114926.
  • Beavan J., Levick S., Lee J., Jones K., 2012. Ground displacements and dilatational strains caused by the 2010-2011 Canterbury earthquakes, GNS Science Consultancy Report 2012/67. 59 p.
  • Brinkgreve R.B.J., Engin E., Engin H.K., 2010. Validation of empirical formulas to derive model parameters for sands, Numerical Methods in Geotechnical Engineering, 137, 142.
  • Ceylan M., 2020., İçme suyu boru hasarlarının detaylı incelenmesi: Christchurch depremi örneği, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsu, Denizli, 99 s.
  • Chen W.W., Shih B.J., Chen Y.C., Hung J.H., Hwang H.H., 2002. Seismic response of natural gas and water pipelines in the Ji-Ji earthquake, Soil Dynamics and Earthquake Engineering, 22(9-12), 1209-1214.
  • Cubrinovski M., Hughes M., Bradley B., Noonan J., Hopkins R., McNeill S., English G., 2014. Performance of horizontal infrastructure in Christchurch City through the 2010-2011 Canterbury earthquake sequence, Technical Report, Erişim Adresi: http://hdl.handle.net/10092/9492.
  • Darendeli M.B., 2001. Development of a new family of normalized modulus reduction and material damping curves, Ph.D. Dissertation, University of Texas Austin, USA.
  • EERI, 1999. The Chi-Chi, Taiwan Earthquake of September 21, 1999, Earthquake Engineering Research Institute, Learning From Earthquakes, Report, Erişim Adresi: https://learningfromearthquakes.org/lfe/pdf/Taiwan_ChiChi_Article_Oct99.pdf.
  • EERI, 2023. February 6, 2023 Türkiye Earthquakes: Report on Geoscience and Engineering Impacts, Oakland, CA: Earthquake Enginering Research Institute. https://doi.org/doi:10.18118/G6PM34.
  • El Hmadi K., O'Rourke M.J., 1988. Soil springs for buried pipeline axial motion, Journal of Geotechnical Engineering, 114(11), 1335-1339.
  • Ghirmay A., 2016. Asbestos cement pipe condition assessment and remaining service life prediction, MSc Thesis, University of Arkansas, Department of Civil Engineering, Fayetteville, 109 p.
  • GTÜ, 2023. 6 Şubat 2023 Maraş Depremleri (Pazarcık Mw7.7 ve Elbistan Mw7.6) Sonrasında Kuvvetli Yer Hareketi, Geoteknik, üst Yapı ve Altyapılara ilişkin Saha Gözlemleri Ön inceleme Raporu 7 Mart 2023 Gebze Teknik Üniversitesi/MARTEST 2023-01. Marmara Afetlerle Baş Edebilir Yapılar için Uygulama ve Araştırma Merkezi (MARTEST), Erişim Adresi: https://www.gtu.edu.tr/fileman/Files/UserFiles/insaat_muhendisligi_bolumu/GTU_Maras%20Depremleri%20Deg%CC%86erlendirme%20Raporu_Final_07.03.2023.pdf.
  • Hudson M., Idriss I., Beirkae M., 1994. QUAD4M User’S Manual.
  • Isenberg J., 1978. Seismic performance of underground water pipelines in the southeast San Fernando Valley in the 1971 San Fernando earthquake. National Science Foundation, Washington, D.C, Technical Report No: PFR 78-15049, Erişim Adresi: https://nehrpsearch.nist.gov/article/PB-293%20562/5/XAB.
  • Kaya E.S., Uckan E., O'Rourke M.J., Karamanos S.A., Akbas B., Cakir F., Cheng Y., 2017. Failure analysis of a welded steel pipe at Kullar fault crossing, Engineering Failure Analysis, 71, 43-62.
  • McGann C.R., Bradley B.A., Wotherspoon L.M., Cox B.R., 2015. Comparison of a Christchurch-specific CPT-Vs correlation and Vs derived from surface wave analysis for strong motion station velocity characterisation, Bulletin of the New Zealand Society for Earthquake Engineering, 48(2), 81-91.
  • Nacaroğlu E., 2017, Sismik Etkiler Altında Gömülü Boru Hatlarında Hasar Analizleri, Doktora Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli.
  • Nair G.S., Dash S.R., Mondal G., 2018. Review of pipeline performance during earthquakes since 1906, Journal of Performance of Constructed Facilities, 32(6), 04018083.
  • NZGD, 2024. The New Zealand Geotechnical Database, Erişim adresi: https://www.nzgd.org.nz/Registration/Login.aspx?ReturnUrl=%2FARCGISMapViewer%2Fmapviewer.aspx.
  • O’Rourke T.D., Jeon S.S., Toprak S., Cubrinovski M., Jung J.K., 2012. Underground lifeline system performance during the Canterbury earthquake sequence, In Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal Vol. 24.
  • O’Rourke T.D., Jeon S.S., Toprak S., Cubrinovski M., Hughes M., Ballegooy S., Bouziou D., 2014. Earthquake response of underground pipeline networks in Christchurch, NZ, Earthquake Spectra, 30(1), 183–204.
  • PEER, 2013. PEER (Pacific Earthquake Engineering Research Center ) NGA-West2 Database, Timothy D. Ancheta, Robert B. Darragh, Jonathan P. Stewart, Emel Seyhan, Walter J. Silva, Brian S.J. Chiou, Katie E. Wooddell, Robert W. Graves, Albert R. Kottke, David M. Boore, Tadahiro Kishida, and Jennifer L. Donahue. May 2013., Erişim Adresi: https://ngawest2.berkeley.edu/.
  • PLAXIS, 2018. PLAXIS 2D Reference Manual. Bentley Systems International Limited, Dublin.
  • Shih B.J., Chang C.H., 2006. Damage survey of water supply systems and fragility curve of PVC water pipelines in the Chi–Chi Taiwan earthquake, Natural Hazards, 37, 71-85.
  • Toprak S., Koc A.C., Cetin O.A., Nacaroglu E., 2008. Assessment of buried pipeline response to earthquake loading by using GIS, In Proc., 14th World Conf. on Earthquake Engineering (pp. 1-8).
  • Toprak S., Nacaroglu E., Koc A.C., O’Rourke T.D., Hamada M., Cubrinovski M., Van Ballegooy S., 2018. Comparison of horizontal ground displacements in Avonside area, Christchurch from air photo, LiDAR and satellite measurements regarding pipeline damage assessment, Bulletin of Earthquake Engineering, 16, 4497-4514.
  • Toprak S., Nacaroglu E., Van Ballegooy S., Koc A.C., Jacka M., Manav Y., Torvelainen E., O'Rourke T.D., 2019. Segmented pipeline damage predictions using liquefaction vulnerability parameters, Soil Dynamics and Earthquake Engineering, 125, 105758.
  • Toprak S., Taskin F., 2007. Estimation of earthquake damage to buried pipelines caused by ground shaking, Natural Hazards, 40, 1-24.
  • Toprak S., Wham B.P., Nacaroglu E., Ceylan M., Dal O., Senturk A.E., 2024, Impact of Seismic Geohazards on water supply systems and pipeline performance: Insights from the 2023 Kahramanmaras Earthquakes, Engineering Geology, 340, 107681. https://doi.org/10.1016/j.enggeo.2024.107681.
  • Uckan E., Aksel M., Atas O., Toprak S., Kaya E.S., 2024. The performance of transmission pipelines on February 6th, 2023 Kahramanmaras earthquake: a series of case studies, Bulletin of Earthquake Engineering, pp.1-20.
  • Vasseghi A., Haghshenas E., Soroushian A., Rakhshandeh M., 2021. Failure analysis of a natural gas pipeline subjected to landslide, Engineering Failure Analysis, 119, 105009.
  • Vazouras P., Karamanos S.A., Dakoulas P., 2010. Finite element analysis of buried steel pipelines under strike-slip fault displacements, Soil Dynamics and Earthquake Engineering, 30(11), 1361-1376.
  • Wang B., 2000. The damage report of public water system after the Ji-Ji earthquake, [In Chinese.] Water Supply, 19 (1), 64–81.
  • Wham B.P., Davis C.A., Rajah S., 2019. Axial connection force capacity required for buried pipelines subjected to seismic permanent ground displacement, In Pipelines 2019 (pp. 299-308), Reston, VA: American Society of Civil Engineers.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Deprem Mühendisliği, İnşaat Geoteknik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Muhammet Ceylan 0000-0001-6258-9314

Berk Yağcıoğlu 0000-0003-3156-2287

Engin Nacaroğlu 0000-0002-0693-6534

Selçuk Toprak 0000-0002-6704-9752

Proje Numarası 2019FEBE013
Erken Görünüm Tarihi 5 Aralık 2024
Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 22 Mayıs 2024
Kabul Tarihi 23 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ceylan, M., Yağcıoğlu, B., Nacaroğlu, E., Toprak, S. (2024). Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi. Türk Deprem Araştırma Dergisi, 6(2), 471-487. https://doi.org/10.46464/tdad.1486701
AMA Ceylan M, Yağcıoğlu B, Nacaroğlu E, Toprak S. Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi. TDAD. Aralık 2024;6(2):471-487. doi:10.46464/tdad.1486701
Chicago Ceylan, Muhammet, Berk Yağcıoğlu, Engin Nacaroğlu, ve Selçuk Toprak. “Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi”. Türk Deprem Araştırma Dergisi 6, sy. 2 (Aralık 2024): 471-87. https://doi.org/10.46464/tdad.1486701.
EndNote Ceylan M, Yağcıoğlu B, Nacaroğlu E, Toprak S (01 Aralık 2024) Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi. Türk Deprem Araştırma Dergisi 6 2 471–487.
IEEE M. Ceylan, B. Yağcıoğlu, E. Nacaroğlu, ve S. Toprak, “Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi”, TDAD, c. 6, sy. 2, ss. 471–487, 2024, doi: 10.46464/tdad.1486701.
ISNAD Ceylan, Muhammet vd. “Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi”. Türk Deprem Araştırma Dergisi 6/2 (Aralık 2024), 471-487. https://doi.org/10.46464/tdad.1486701.
JAMA Ceylan M, Yağcıoğlu B, Nacaroğlu E, Toprak S. Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi. TDAD. 2024;6:471–487.
MLA Ceylan, Muhammet vd. “Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi”. Türk Deprem Araştırma Dergisi, c. 6, sy. 2, 2024, ss. 471-87, doi:10.46464/tdad.1486701.
Vancouver Ceylan M, Yağcıoğlu B, Nacaroğlu E, Toprak S. Sismik Etkiler Altında Gömülü Boru Davranışı: Christchurch Depremi Vaka Analizi. TDAD. 2024;6(2):471-87.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter