Araştırma Makalesi
BibTex RIS Kaynak Göster

Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma

Yıl 2022, Cilt: 4 Sayı: 2, 210 - 229, 13.12.2022
https://doi.org/10.46464/tdad.1170304

Öz

Kocaeli İli’ndeki bir trafo montaj-demontaj binasının bulunduğu arazide kapsamlı bir zemin etüdü yapılmış ve bu alanda sıvılaşma riskinin olduğu görülmüştür. Sıvılaşma riskini ortadan kaldırmak amacıyla jet grout kolonlar zemin iyileştirme yöntemi olarak seçilmiştir. Tasarımı yapılan jet grout kolonların imalatından sonra sıvılaşma riskinin ortadan kalkıp kalkmadığı, gerçekleştirilen analitik ve sayısal analizler ile incelenmiştir. Jet grout kolonların sıvılaşmayı önlemedeki etkinliği, efektif gerilme tabanlı sonlu elemanlar analizleri yapabilen MIDAS GTS NX programı ile UBCSAND bünye modeli kullanılarak, aşırı boşluk suyu basıncı oluşumu üzerinden değerlendirilmiştir. Ayrıca, jet grout kolonların sıvılaşabilir zemin tabakasındaki kayma gerilmeleri, kayma deformasyonları ve aşırı boşluk suyu basıncı dağılımları üzerindeki etkisi, jet grout kolonların farklı alan ve dayanım oranları için gerçekleştirilen parametrik analizlerle ortaya konmuştur.

Destekleyen Kurum

Muğla Sıtkı Koçman Üniversitesi Bilimsel Araştırmalar Koordinatörlüğü Birimi

Proje Numarası

18/001

Teşekkür

Bu çalışma, Muğla Sıtkı Koçman Üniversitesi Bilimsel Araştırmalar Koordinasyon Birimi tarafından 18/001 numaralı “Jet-Grout Kolonların Zemin İyileştirme Verimliliğinin Belirlenmesi Adına Bir Vaka Analizi” başlıklı proje ile desteklenmiştir. Bilimsel Araştırma Koordinasyon Birimi’ne desteğinden dolayı teşekkür ederiz. Ayrıca araştırmaya konu olan inceleme alanının verilerini bizlerle paylaşan İnş. Müh. Turgay Erdoğan’a da teşekkür ederiz

Kaynakça

  • Adalier K., Elgamal A., Meneses J., Baez J.I., 2003. Stone columns as liquefaction countermeasure in non-plastic silty soils, Soil Dynamics and Earthquake Engineering 23, 571-584
  • AFAD, 2018. Türkiye Deprem Tehlike Haritası, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara. Erişim adresi: http://tdth.afad.gov.tr/TDTH/main.xhtml
  • AFAD, 2021. 1900-20xx Deprem Kataloğu (M >= 4.0). Erişim adresi: http://deprem.afad.gov.tr/event-catalog
  • Almani Z.A., Memon A.A., Habib A.F., Lal K., Shah S.F., 2013. 3D numerical modelling of liquefaction-induced settlements and its mitigation, Sindh University Research Journal (Science Series) 45(2), 301-304
  • Askan A., Karimzadeh S., 2019. Kuzey Anadolu Fay Hattı üzerinde olası deprem senaryoları için benzeştirilmiş bir kuvvetli yer hareketi veri tabanı, Türk Deprem Araştırma Dergisi 1(1), 76-97
  • Baez J.I., 1995. A design model for the reduction of soil liquefaction by using vibro-stone columns, PhD Thesis, University of Southern California, Los Angeles, 207 p.
  • Beaty M.H., Byrne P.M., 1998. An effective stress model for predicting liquefaction behaviour of sand, Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE 75(1), 766-777
  • Beaty M.H., Byrne P.M., 2000. A synthesized approach for predicting liquefaction and resulting displacements, 12th World Conference on Earthquake Engineering, 30 January-4 February 2000, Auckland-New Zelland, Erişim adresi: https://www.iitk.ac.in/nicee/wcee/article/1589.pdf
  • Beaty M.H., Byrne P.M., 2011. UBCSAND constitutive model version 904aR, Itasca UDM, Erişim adresi: https://docplayer.net/84675337-Ubcsand-constitutive-model-version-904ar.html
  • Bowles J.E., 1997. Foundation Analysis and Design, McGraw-Hill, Singapore, 1168 p.
  • Bruce D.A., Bruce, M.E.C., 2003. The practitioner’s guide to deep mixing, Third International Conference on Grouting and Ground Treatment, 10-12 February 2003, New Orleans-USA, Erişim adresi: https://ascelibrary.org/doi/10.1061/40663%282003%2922
  • Byrne P.M., Park S.S., Beaty M., Sharp M.K., Gonzalez L., Abdoun T., 2004. Numerical modeling of liquefaction and comparison with centrifuge tests, Canadian Geotechnical Journal 41(2), 193‐211
  • Chang S.E., 2000. Disasters and transport systems: loss, recovery and competition at the Port of Kobe after the 1995 earthquake, Journal of Transport Geography 8, 53-65
  • Dawson E.M., Roth W.H., Nesarajah S., Bureau G., Davis C.A., 2001. A practice-oriented pore pressure generation model, 2nd International FLAC Symposium, 29-31 May 2001, Lyon-France, Erişim adresi: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003077527-9/practice-oriented-pore-pressure-generation-model-dawson-roth-nesarajah-bureau-davis
  • Finn W.D.L., Yogendrakumar M., Yoshida N., Yoshida H., 1986. TARA-3: A program to compute the response of 2D embankments and soil-structure interaction systems to seismic loadings, University of British Columbia, Vancouver-USA
  • Galavi V., Petalas A., Brinkgreve R.B.J., 2013. Finite element modelling of seismic liquefaction in soils, Geotechnical Engineering Journal of the SEAGS &AGSSEA 43(3), 55-64
  • Hausler E.A., Sitar N., 2001. Performance of soil improvement techniques in earthquakes, 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 28 March 2001, California-USA, Erişim adresi: https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1807&context=icrageesd
  • Ishihara K., Yoshimine M., 1992. Evaluation of settlements in sand deposits following liquefaction during earthquakes, Soils and Foundation 32 (1),173-188
  • Martin J.R., Olgun C.G., Mitchell J.K., Durgunoglu H.T., 2004. High-modulus columns for liquefaction mitigation, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 30(6), 561-571
  • Mısır G., 2020. Jet grout yöntemi ile zemin iyileştirme ve deplasman tahmini: Vaka analizi, Avrupa Bilim ve Teknoloji Dergisi 18, 290-299
  • Mogami T., Kubo K., 1953. The behaviour of soil during vibration, 3rd International Conference on Soil Mechanics and Foundation Engineering, 16-17 August 1953, Switzerland, Erişim adresi: https://www.issmge.org/uploads/publications/1/42/1953_01_0034.pdf
  • Moseley M.P., Kirsch K., 2004. Ground Improvement, Spon Press-Taylor & Francis, Oxford, U.K., 431 p.
  • Nishimatsu Y., 1972. The mechanics of rock cutting, International Journal of Rock Mechanics and Mining Sciences 9(2), 261-270
  • Olgun C.G., Martin J.R., 2008. Numerical modeling of the seismic response of columnar reinforced ground, Geotechnical Earthquake Engineering and Soil Dynamics Congress IV, 18-22 May 2008, California-USA, Erişim adresi: https://ascelibrary.org/doi/10.1061/40975%28318%29112
  • Oral S.Ü., 2014. Effective stress based constitutive modelling and assessment of seismic pile-soil interaction in liquefiable soils, PhD Thesis, Middle East Technical University, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, Ankara, 284 p.
  • Özener P., 2007. Depremde tabakalı kum zeminde oluşan sıvılaşma ve sıvılaşma sonrası davranışın model deneylerle araştırılması, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 444 s.
  • Özener P., Dulger M., Berilgen M., 2015. Numerical study of effectiveness of jet-grout columns in liquefaction mitigation, 6th International Conference on Earthquake Geotechnical Engineering, 1-4 November 2015, New Zelland, Erişim adresi: https://secure.tcc.co.nz/ei/images/ICEGE15%20Papers/Ozener_584.00.pdf
  • Özsoy B., Durgunoğlu T., 2003. Sıvılaşma etkilerinin yüksek kayma modüllü zemin–çimento karışımı kolonlarla azaltılması, Beşinci Ulusal Deprem Mühendisliği Konferansı, 26-30 Mayıs 2003, İstanbul, Erişim adresi: https://www.zeminas.com.tr/docs/paperno42.pdf
  • Papadimitriou A.G., Bouckovalas G.D., Dafalias Y.F., 2001. Plasticity model for sand under small and large cyclic strains, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 127(11), 973-983
  • Puebla H., Byrne P.M., Phillips R., 1997. Analysis of CANLEX liquefaction embankments: Prototype and centrifuge models, Canadian Geotechnical Journal 34(5), 641‐657
  • Scawthorn C., Johnson G.S., 2000. Preliminary report Kocaeli (Izmit) earthquake of 17 August 1999, Engineering Structures 22, 727-745
  • Seed H.B., Idriss I.M., 1971. Simplified procedure for evaluating soil liquefaction potential, Journal of the Soil Mechanics and Foundations Division, ASCE 97(9) 1249-1273
  • Selçukhan O., Ekinci A., 2020. Zemin iyileştirme yöntemleri ve yaygın kullanımına bağlı değerlendirilmesi, Avrupa Bilim ve Teknoloji Dergisi 23, 481-496
  • Sucuoglu H., 2019. 2019 Türkiye Bina Deprem Yönetmeliğinde Başlıca Yenilikler, Türk Deprem Araştırma Dergisi 1(1), 63-75
  • TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı Ankara, Erişim adresi: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2-1.pdf
  • Tonaroğlu M., 2006. Sıvılaşmanın nümerik yöntemlerle modellenmesi, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 134 s.
  • Unutmaz B., 2012. Numerical assessment of high-modulus columns on liquefaction triggering potential, International journal for numerical and analytical methods in geomechanics 32, 1312-1325
  • Wang Z.L., 1990. Bounding surface hypoplasticity model for granular soils and its applications, PhD Thesis, University of California, Davis, California, USA
  • Wood D.M., 1990. Soil Behaviour and critical state soil mechanics, Cambridge University Press, USA, 462 p.
  • Xanthakos P.P., Abrahamson L.W., Bruce D.A., 1994. Ground Control and Improvement, Wiley, New York, USA, 936 p.
  • Yoshida N., Tokimatsu K., Yasuda S., Kokusho T., Okimura T., 2001. Geotechnical aspects of damage in Adapazarı City during 1999 Kocaeli, Turkey Earthquake, Soils and Foundation 41(4), 25-45
  • Youd T.L., Hoose S., 1976. Liquefaction during 1906 San Francisco Earthquake, Journal of Geotechnical Engineering Division, ASCE 102(5), 425-439
  • Youd T.L., Idriss I.M., 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 127(10), 297-313.

A Numerical Study on the Efficiency of Jet Grout Columns in Liquefaction Mitigation

Yıl 2022, Cilt: 4 Sayı: 2, 210 - 229, 13.12.2022
https://doi.org/10.46464/tdad.1170304

Öz

A comprehensive site investigation was carried out on the site in Kocaeli, where a transformer assembly-disassembly building was located, and it was observed that there was liquefaction risk in the area. Therefore, jet grout columns were selected as the soil improvement method. After the production of the designed jet grout columns, it was investigated whether the liquefaction risk was eliminated through analytical and numerical analyses. The effectiveness of jet grout columns in preventing liquefaction was evaluated in terms of the generation of excess pore water pressure by using UBCSAND constitutive model on MIDAS GTS NX software which can perform effective stress-based finite element analyses. In addition, the effect of jet grout columns on the variation of shear stresses, shear deformations and excessive pore water pressure ratios in liquefiable soils were examined through the parametric analyses performed for different area and strength ratios of jet grout columns.

Proje Numarası

18/001

Kaynakça

  • Adalier K., Elgamal A., Meneses J., Baez J.I., 2003. Stone columns as liquefaction countermeasure in non-plastic silty soils, Soil Dynamics and Earthquake Engineering 23, 571-584
  • AFAD, 2018. Türkiye Deprem Tehlike Haritası, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara. Erişim adresi: http://tdth.afad.gov.tr/TDTH/main.xhtml
  • AFAD, 2021. 1900-20xx Deprem Kataloğu (M >= 4.0). Erişim adresi: http://deprem.afad.gov.tr/event-catalog
  • Almani Z.A., Memon A.A., Habib A.F., Lal K., Shah S.F., 2013. 3D numerical modelling of liquefaction-induced settlements and its mitigation, Sindh University Research Journal (Science Series) 45(2), 301-304
  • Askan A., Karimzadeh S., 2019. Kuzey Anadolu Fay Hattı üzerinde olası deprem senaryoları için benzeştirilmiş bir kuvvetli yer hareketi veri tabanı, Türk Deprem Araştırma Dergisi 1(1), 76-97
  • Baez J.I., 1995. A design model for the reduction of soil liquefaction by using vibro-stone columns, PhD Thesis, University of Southern California, Los Angeles, 207 p.
  • Beaty M.H., Byrne P.M., 1998. An effective stress model for predicting liquefaction behaviour of sand, Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE 75(1), 766-777
  • Beaty M.H., Byrne P.M., 2000. A synthesized approach for predicting liquefaction and resulting displacements, 12th World Conference on Earthquake Engineering, 30 January-4 February 2000, Auckland-New Zelland, Erişim adresi: https://www.iitk.ac.in/nicee/wcee/article/1589.pdf
  • Beaty M.H., Byrne P.M., 2011. UBCSAND constitutive model version 904aR, Itasca UDM, Erişim adresi: https://docplayer.net/84675337-Ubcsand-constitutive-model-version-904ar.html
  • Bowles J.E., 1997. Foundation Analysis and Design, McGraw-Hill, Singapore, 1168 p.
  • Bruce D.A., Bruce, M.E.C., 2003. The practitioner’s guide to deep mixing, Third International Conference on Grouting and Ground Treatment, 10-12 February 2003, New Orleans-USA, Erişim adresi: https://ascelibrary.org/doi/10.1061/40663%282003%2922
  • Byrne P.M., Park S.S., Beaty M., Sharp M.K., Gonzalez L., Abdoun T., 2004. Numerical modeling of liquefaction and comparison with centrifuge tests, Canadian Geotechnical Journal 41(2), 193‐211
  • Chang S.E., 2000. Disasters and transport systems: loss, recovery and competition at the Port of Kobe after the 1995 earthquake, Journal of Transport Geography 8, 53-65
  • Dawson E.M., Roth W.H., Nesarajah S., Bureau G., Davis C.A., 2001. A practice-oriented pore pressure generation model, 2nd International FLAC Symposium, 29-31 May 2001, Lyon-France, Erişim adresi: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003077527-9/practice-oriented-pore-pressure-generation-model-dawson-roth-nesarajah-bureau-davis
  • Finn W.D.L., Yogendrakumar M., Yoshida N., Yoshida H., 1986. TARA-3: A program to compute the response of 2D embankments and soil-structure interaction systems to seismic loadings, University of British Columbia, Vancouver-USA
  • Galavi V., Petalas A., Brinkgreve R.B.J., 2013. Finite element modelling of seismic liquefaction in soils, Geotechnical Engineering Journal of the SEAGS &AGSSEA 43(3), 55-64
  • Hausler E.A., Sitar N., 2001. Performance of soil improvement techniques in earthquakes, 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 28 March 2001, California-USA, Erişim adresi: https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1807&context=icrageesd
  • Ishihara K., Yoshimine M., 1992. Evaluation of settlements in sand deposits following liquefaction during earthquakes, Soils and Foundation 32 (1),173-188
  • Martin J.R., Olgun C.G., Mitchell J.K., Durgunoglu H.T., 2004. High-modulus columns for liquefaction mitigation, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 30(6), 561-571
  • Mısır G., 2020. Jet grout yöntemi ile zemin iyileştirme ve deplasman tahmini: Vaka analizi, Avrupa Bilim ve Teknoloji Dergisi 18, 290-299
  • Mogami T., Kubo K., 1953. The behaviour of soil during vibration, 3rd International Conference on Soil Mechanics and Foundation Engineering, 16-17 August 1953, Switzerland, Erişim adresi: https://www.issmge.org/uploads/publications/1/42/1953_01_0034.pdf
  • Moseley M.P., Kirsch K., 2004. Ground Improvement, Spon Press-Taylor & Francis, Oxford, U.K., 431 p.
  • Nishimatsu Y., 1972. The mechanics of rock cutting, International Journal of Rock Mechanics and Mining Sciences 9(2), 261-270
  • Olgun C.G., Martin J.R., 2008. Numerical modeling of the seismic response of columnar reinforced ground, Geotechnical Earthquake Engineering and Soil Dynamics Congress IV, 18-22 May 2008, California-USA, Erişim adresi: https://ascelibrary.org/doi/10.1061/40975%28318%29112
  • Oral S.Ü., 2014. Effective stress based constitutive modelling and assessment of seismic pile-soil interaction in liquefiable soils, PhD Thesis, Middle East Technical University, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, Ankara, 284 p.
  • Özener P., 2007. Depremde tabakalı kum zeminde oluşan sıvılaşma ve sıvılaşma sonrası davranışın model deneylerle araştırılması, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 444 s.
  • Özener P., Dulger M., Berilgen M., 2015. Numerical study of effectiveness of jet-grout columns in liquefaction mitigation, 6th International Conference on Earthquake Geotechnical Engineering, 1-4 November 2015, New Zelland, Erişim adresi: https://secure.tcc.co.nz/ei/images/ICEGE15%20Papers/Ozener_584.00.pdf
  • Özsoy B., Durgunoğlu T., 2003. Sıvılaşma etkilerinin yüksek kayma modüllü zemin–çimento karışımı kolonlarla azaltılması, Beşinci Ulusal Deprem Mühendisliği Konferansı, 26-30 Mayıs 2003, İstanbul, Erişim adresi: https://www.zeminas.com.tr/docs/paperno42.pdf
  • Papadimitriou A.G., Bouckovalas G.D., Dafalias Y.F., 2001. Plasticity model for sand under small and large cyclic strains, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 127(11), 973-983
  • Puebla H., Byrne P.M., Phillips R., 1997. Analysis of CANLEX liquefaction embankments: Prototype and centrifuge models, Canadian Geotechnical Journal 34(5), 641‐657
  • Scawthorn C., Johnson G.S., 2000. Preliminary report Kocaeli (Izmit) earthquake of 17 August 1999, Engineering Structures 22, 727-745
  • Seed H.B., Idriss I.M., 1971. Simplified procedure for evaluating soil liquefaction potential, Journal of the Soil Mechanics and Foundations Division, ASCE 97(9) 1249-1273
  • Selçukhan O., Ekinci A., 2020. Zemin iyileştirme yöntemleri ve yaygın kullanımına bağlı değerlendirilmesi, Avrupa Bilim ve Teknoloji Dergisi 23, 481-496
  • Sucuoglu H., 2019. 2019 Türkiye Bina Deprem Yönetmeliğinde Başlıca Yenilikler, Türk Deprem Araştırma Dergisi 1(1), 63-75
  • TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı Ankara, Erişim adresi: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2-1.pdf
  • Tonaroğlu M., 2006. Sıvılaşmanın nümerik yöntemlerle modellenmesi, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 134 s.
  • Unutmaz B., 2012. Numerical assessment of high-modulus columns on liquefaction triggering potential, International journal for numerical and analytical methods in geomechanics 32, 1312-1325
  • Wang Z.L., 1990. Bounding surface hypoplasticity model for granular soils and its applications, PhD Thesis, University of California, Davis, California, USA
  • Wood D.M., 1990. Soil Behaviour and critical state soil mechanics, Cambridge University Press, USA, 462 p.
  • Xanthakos P.P., Abrahamson L.W., Bruce D.A., 1994. Ground Control and Improvement, Wiley, New York, USA, 936 p.
  • Yoshida N., Tokimatsu K., Yasuda S., Kokusho T., Okimura T., 2001. Geotechnical aspects of damage in Adapazarı City during 1999 Kocaeli, Turkey Earthquake, Soils and Foundation 41(4), 25-45
  • Youd T.L., Hoose S., 1976. Liquefaction during 1906 San Francisco Earthquake, Journal of Geotechnical Engineering Division, ASCE 102(5), 425-439
  • Youd T.L., Idriss I.M., 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 127(10), 297-313.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Gizem Şahin 0000-0002-1199-8107

Onur Toygar 0000-0003-2366-3993

Mehmet Rifat Kahyaoğlu 0000-0002-9288-5277

Proje Numarası 18/001
Yayımlanma Tarihi 13 Aralık 2022
Gönderilme Tarihi 2 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Şahin, G., Toygar, O., & Kahyaoğlu, M. R. (2022). Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma. Türk Deprem Araştırma Dergisi, 4(2), 210-229. https://doi.org/10.46464/tdad.1170304
AMA Şahin G, Toygar O, Kahyaoğlu MR. Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma. TDAD. Aralık 2022;4(2):210-229. doi:10.46464/tdad.1170304
Chicago Şahin, Gizem, Onur Toygar, ve Mehmet Rifat Kahyaoğlu. “Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma”. Türk Deprem Araştırma Dergisi 4, sy. 2 (Aralık 2022): 210-29. https://doi.org/10.46464/tdad.1170304.
EndNote Şahin G, Toygar O, Kahyaoğlu MR (01 Aralık 2022) Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma. Türk Deprem Araştırma Dergisi 4 2 210–229.
IEEE G. Şahin, O. Toygar, ve M. R. Kahyaoğlu, “Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma”, TDAD, c. 4, sy. 2, ss. 210–229, 2022, doi: 10.46464/tdad.1170304.
ISNAD Şahin, Gizem vd. “Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma”. Türk Deprem Araştırma Dergisi 4/2 (Aralık 2022), 210-229. https://doi.org/10.46464/tdad.1170304.
JAMA Şahin G, Toygar O, Kahyaoğlu MR. Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma. TDAD. 2022;4:210–229.
MLA Şahin, Gizem vd. “Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma”. Türk Deprem Araştırma Dergisi, c. 4, sy. 2, 2022, ss. 210-29, doi:10.46464/tdad.1170304.
Vancouver Şahin G, Toygar O, Kahyaoğlu MR. Sıvılaşma Riskinin Azaltılması için Kullanılan Jet Grout Kolonlarının Verimliliği Üzerine Bir Sayısal Çalışma. TDAD. 2022;4(2):210-29.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter