Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method

Yıl 2022, , 95 - 101, 25.03.2022
https://doi.org/10.46810/tdfd.1011220

Öz

In this study, ZnO@Fe3O4composite nanostructures were synthesized using the hydrothermal method. X-ray diffraction analysis was performed for the structural characterization of nanostructures obtained with the addition of Fe3O4at different ratios, and no impurity peaks were found. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used for morphological imaging. It was understood that ZnO nanoparticles were decorated around Fe3O4in the morphology of nanostructures. Fe, Zn, and O peaks were detected in elemental analysis. Energy band gaps of ZnO@Fe3O4nanocomposite structures were obtained from absorbance data collected by use of UV-VIS spectrometer. The band gap values of nanostructures were calculated to be in the range of 2-2.1 eV. Magnetic properties were determined using a vibrating sample magnetometer (VSM), and the values of 3.76 emu/g and 7.96 emu/g were found depending on the Fe3O4content. Although these values show a limited ferromagnetic property, they are important in optoelectronic and medical imaging applications due to the advanced optical and electronic properties of ZnO.

Kaynakça

  • [1] Nasrollahzadeh M, Issaabadi Z, Sajjadi M, Sajadi SM, Atarod M. Chapter 2 - Types of Nanostructures. In: Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z, Atarod MBT-IS and T, editors. An Introduction to Green Nanotechnology [Internet]. Elsevier; 2019. p. 29–80. Available from: https://www.sciencedirect.com/science/article/pii/B978012813586000002X
  • [2] Pascariu P, Koudoumas E, Dinca V, Rusen L, Suchea MP. Chapter 14 - Applications of metallic nanostructures in biomedical field. In: Dinca V, Suchea MPBT-FNI for E and BA, editors. Micro and Nano Technologies [Internet]. Elsevier; 2019. p. 341–61. Available from: https://www.sciencedirect.com/science/article/pii/B9780128144015000141
  • [3] Tripathy N, Kim D-H. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg [Internet]. 2018;5(1):27. Available from: https://doi.org/10.1186/s40580-018-0159-9
  • [4] Bahari A, Roeinfard M, Ramzannezhad A. Characteristics of Fe3O4/ZnO nanocomposite as a possible gate dielectric of nanoscale transistors in the field of cyborg. J Mater Sci Mater Electron [Internet]. 2016;27(9):9363–9. Available from: https://doi.org/10.1007/s10854-016-4978-3
  • [5] Nurul Ulya H, Taufiq A, Sunaryono. Comparative Structural Properties of Nanosized ZnO/Fe3O4 Composites Prepared by Sonochemical and Sol-Gel Methods. IOP Conf Ser Earth Environ Sci [Internet]. 2019;276:12059. Available from: http://dx.doi.org/10.1088/1755-1315/276/1/012059
  • [6] Hong RY, Zhang SZ, Di GQ, Li HZ, Zheng Y, Ding J, et al. Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater Res Bull [Internet]. 2008;43(8):2457–68. Available from: https://www.sciencedirect.com/science/article/pii/S0025540807003352
  • [7] Atla SB, Lin W-R, Chien T-C, Tseng M-J, Shu J-C, Chen C-C, et al. Fabrication of Fe3O4/ZnO magnetite core shell and its application in photocatalysis using sunlight. Mater Chem Phys [Internet]. 2018;216:380–6. Available from: https://www.sciencedirect.com/science/article/pii/S0254058418305194
  • [8] Winatapura, D. S., Dewi, S. H., & Adi WA. Synthesis, characterization, and photocatalytic activity of Fe3O4@ ZnO nanocomposite. Int J Technol. 2016;7(3):408–16.
  • [9] Machovsky M, Kuritka I, Kozakova Z. Microwave assisted synthesis of nanostructured Fe3O4/ZnO microparticles. Mater Lett [Internet]. 2012;86:136–8. Available from: https://www.sciencedirect.com/science/article/pii/S0167577X12010099
  • [10] Roychowdhury A, Pati SP, Mishra AK, Kumar S, Das D. Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies. J Phys Chem Solids [Internet]. 2013;74(6):811–8. Available from: https://www.sciencedirect.com/science/article/pii/S0022369713000231
  • [11] Kurnaz Yetim N, Kurşun Baysak F, Koç MM, Nartop D. Synthesis and characterization of Au and Bi2O3 decorated Fe3O4@PAMAM dendrimer nanocomposites for medical applications. J Nanostructure Chem [Internet]. 2021; Available from: https://doi.org/10.1007/s40097-021-00386-w
  • [12] Kurnaz Yetim N, Aslan N, Koç MM. Structural and catalytic properties of Fe3O4 doped Bi2S3 novel magnetic nanocomposites: p-Nitrophenol case. J Environ Chem Eng [Internet]. 2020;8(5):104258. Available from: https://www.sciencedirect.com/science/article/pii/S2213343720306072
  • [13] Karaçam R, Yetim NK, Koç MM. Structural and Magnetic Investigation of Bi2S3@Fe3O4 Nanocomposites for Medical Applications. J Supercond Nov Magn [Internet]. 2020;33(9):2715–25. Available from: https://doi.org/10.1007/s10948-020-05518-x
  • [14] Kurnaz Yetim N. Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4. Düzce Univ J Sci Technol. 2020;(8):1964–74.
  • [15] Bahtiar S, Taufiq A, Utomo J, Hidayat N, Sunaryono. Structural Characterizations of Magnetite/Zinc Oxide Nanocomposites Prepared by Co-precipitation Method. IOP Conf Ser Mater Sci Eng [Internet]. 2019;515:12076. Available from: http://dx.doi.org/10.1088/1757-899X/515/1/012076
  • [16] Siregar J, Sebayang K, Yuliarto B, Humaidi S. XRD characterization of Fe3O4-ZnO nanocomposite material by the hydrothermal method. AIP Conf Proc. 2020;2221(March):1–5.
  • [17] Długosz O, Szostak K, Krupiński M, Banach M. Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes. Int J Environ Sci Technol [Internet]. 2021;18(3):561–74. Available from: https://doi.org/10.1007/s13762-020-02852-4
  • [18] Goh EG, Xu X, McCormick PG. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr Mater [Internet]. 2014;78–79:49–52. Available from: https://www.sciencedirect.com/science/article/pii/S1359646214000372
  • [19] Wang X, Chen X, Gao L, Zheng H, Zhang Z, Qian Y. One-Dimensional Arrays of Co3O4 Nanoparticles:  Synthesis, Characterization, and Optical and Electrochemical Properties. J Phys Chem B [Internet]. 2004 Oct 1;108(42):16401–4. Available from: https://doi.org/10.1021/jp048016p
  • [20] Bhadwal AS, Tripathi RM, Gupta RK, Kumar N, Singh RP, Shrivastav A. Biogenic synthesis and photocatalytic activity of CdS nanoparticles. RSC Adv [Internet]. 2014;4(19):9484–90. Available from: http://dx.doi.org/10.1039/C3RA46221H
  • [21] Yetim NK, Aslan N, Sarıoğlu A, Sarı N, Koç MM. Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J Mater Sci Mater Electron [Internet]. 2020;31(15):12238–48. Available from: https://doi.org/10.1007/s10854-020-03769-x
  • [22] Yetim NK, Kurş F. Magnetic and Structural Characterization of Inorganic / Organic coated. J Mater Electron Devices. 2021;2:12–8. [23] Hu Y, Chen H-J. Preparation and characterization of nanocrystalline ZnO particles from a hydrothermal process. J Nanoparticle Res [Internet]. 2008;10(3):401–7. Available from: https://doi.org/10.1007/s11051-007-9264-0
  • [24] Kulkarni SA, Sawadh PS, Palei PK, Kokate KK. Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int [Internet]. 2014;40(1, Part B):1945–9. Available from: https://www.sciencedirect.com/science/article/pii/S0272884213008973
  • [25] Sin J-C, Tan S-Q, Quek J-A, Lam S-M, Mohamed AR. Facile fabrication of hierarchical porous ZnO/Fe3O4 composites with enhanced magnetic, photocatalytic and antibacterial properties. Mater Lett [Internet]. 2018;228:207–11. Available from: https://www.sciencedirect.com/science/article/pii/S0167577X18309340
  • [26] Koç MM, Aslan N, Kao AP, Barber AH. Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc Res Tech. 2019;82(6):812–48.
  • [27] Aslan N, Ceylan B, Koç MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct [Internet]. 2020;1219:128599. Available from: https://www.sciencedirect.com/science/article/pii/S0022286020309248

Hidrotermal yöntem kullanılarak ZnO@Fe3O4 kompozit nanoyapıların sentezi ve karakterizasyonu

Yıl 2022, , 95 - 101, 25.03.2022
https://doi.org/10.46810/tdfd.1011220

Öz

Bu çalışmada, ZnO@Fe3O4kompozit nanoyapılar hidrotermal yöntem kullanılarak sentezlenmiştir. Farklı oranlarda Fe3O4katkısıyla elde edilen nanoyapıların yapısal karakterizasyonu için X-ışını kırınım analizi gerçekleştirildi ve herhangi bir safsızlık pikine rastlanmadı. Morfolojik görüntülemede taramalı elektron mikroskobu (SEM) ve geçirimli elektron mikroskobu (TEM) kullanıldı. Nanoyapıların morfolojisinde Fe3O4etrafında ZnO nano taneciklerinin dekore edildiği anlaşılmıştır. Elemental analizde ise Fe, Zn ve O pikleri kaydedilmiştir. ZnO@Fe3O4nanokompozit yapıların bant aralığı enerjileri Uv-Vis spektromotresi aracığılıyla elde edilen absorbans datalarından elde edilmiştir. Nanoyapıların bant gap değerleri yaklaşık olarak 2-2.1 eV aralığında hesaplanmıştır. Manyetik özellikler ise Vibrating Sample Magnetometer (VSM) kullanılarak tespit edildi ve Fe3O4katkı oranına bağlı olarak 3.76 emu/g ile 7.96 emu/g değerleri bulundu. Bu değerler sınırlı bir ferromanyetik özellik göstermesine rağmen ZnO’nun sahip olduğu gelişmiş optik, elektronik özelliklerinden dolayı optoelektronik ve medikal görüntüleme uygulamalarında önem arz etmektedir.

Kaynakça

  • [1] Nasrollahzadeh M, Issaabadi Z, Sajjadi M, Sajadi SM, Atarod M. Chapter 2 - Types of Nanostructures. In: Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z, Atarod MBT-IS and T, editors. An Introduction to Green Nanotechnology [Internet]. Elsevier; 2019. p. 29–80. Available from: https://www.sciencedirect.com/science/article/pii/B978012813586000002X
  • [2] Pascariu P, Koudoumas E, Dinca V, Rusen L, Suchea MP. Chapter 14 - Applications of metallic nanostructures in biomedical field. In: Dinca V, Suchea MPBT-FNI for E and BA, editors. Micro and Nano Technologies [Internet]. Elsevier; 2019. p. 341–61. Available from: https://www.sciencedirect.com/science/article/pii/B9780128144015000141
  • [3] Tripathy N, Kim D-H. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg [Internet]. 2018;5(1):27. Available from: https://doi.org/10.1186/s40580-018-0159-9
  • [4] Bahari A, Roeinfard M, Ramzannezhad A. Characteristics of Fe3O4/ZnO nanocomposite as a possible gate dielectric of nanoscale transistors in the field of cyborg. J Mater Sci Mater Electron [Internet]. 2016;27(9):9363–9. Available from: https://doi.org/10.1007/s10854-016-4978-3
  • [5] Nurul Ulya H, Taufiq A, Sunaryono. Comparative Structural Properties of Nanosized ZnO/Fe3O4 Composites Prepared by Sonochemical and Sol-Gel Methods. IOP Conf Ser Earth Environ Sci [Internet]. 2019;276:12059. Available from: http://dx.doi.org/10.1088/1755-1315/276/1/012059
  • [6] Hong RY, Zhang SZ, Di GQ, Li HZ, Zheng Y, Ding J, et al. Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater Res Bull [Internet]. 2008;43(8):2457–68. Available from: https://www.sciencedirect.com/science/article/pii/S0025540807003352
  • [7] Atla SB, Lin W-R, Chien T-C, Tseng M-J, Shu J-C, Chen C-C, et al. Fabrication of Fe3O4/ZnO magnetite core shell and its application in photocatalysis using sunlight. Mater Chem Phys [Internet]. 2018;216:380–6. Available from: https://www.sciencedirect.com/science/article/pii/S0254058418305194
  • [8] Winatapura, D. S., Dewi, S. H., & Adi WA. Synthesis, characterization, and photocatalytic activity of Fe3O4@ ZnO nanocomposite. Int J Technol. 2016;7(3):408–16.
  • [9] Machovsky M, Kuritka I, Kozakova Z. Microwave assisted synthesis of nanostructured Fe3O4/ZnO microparticles. Mater Lett [Internet]. 2012;86:136–8. Available from: https://www.sciencedirect.com/science/article/pii/S0167577X12010099
  • [10] Roychowdhury A, Pati SP, Mishra AK, Kumar S, Das D. Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies. J Phys Chem Solids [Internet]. 2013;74(6):811–8. Available from: https://www.sciencedirect.com/science/article/pii/S0022369713000231
  • [11] Kurnaz Yetim N, Kurşun Baysak F, Koç MM, Nartop D. Synthesis and characterization of Au and Bi2O3 decorated Fe3O4@PAMAM dendrimer nanocomposites for medical applications. J Nanostructure Chem [Internet]. 2021; Available from: https://doi.org/10.1007/s40097-021-00386-w
  • [12] Kurnaz Yetim N, Aslan N, Koç MM. Structural and catalytic properties of Fe3O4 doped Bi2S3 novel magnetic nanocomposites: p-Nitrophenol case. J Environ Chem Eng [Internet]. 2020;8(5):104258. Available from: https://www.sciencedirect.com/science/article/pii/S2213343720306072
  • [13] Karaçam R, Yetim NK, Koç MM. Structural and Magnetic Investigation of Bi2S3@Fe3O4 Nanocomposites for Medical Applications. J Supercond Nov Magn [Internet]. 2020;33(9):2715–25. Available from: https://doi.org/10.1007/s10948-020-05518-x
  • [14] Kurnaz Yetim N. Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4. Düzce Univ J Sci Technol. 2020;(8):1964–74.
  • [15] Bahtiar S, Taufiq A, Utomo J, Hidayat N, Sunaryono. Structural Characterizations of Magnetite/Zinc Oxide Nanocomposites Prepared by Co-precipitation Method. IOP Conf Ser Mater Sci Eng [Internet]. 2019;515:12076. Available from: http://dx.doi.org/10.1088/1757-899X/515/1/012076
  • [16] Siregar J, Sebayang K, Yuliarto B, Humaidi S. XRD characterization of Fe3O4-ZnO nanocomposite material by the hydrothermal method. AIP Conf Proc. 2020;2221(March):1–5.
  • [17] Długosz O, Szostak K, Krupiński M, Banach M. Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes. Int J Environ Sci Technol [Internet]. 2021;18(3):561–74. Available from: https://doi.org/10.1007/s13762-020-02852-4
  • [18] Goh EG, Xu X, McCormick PG. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr Mater [Internet]. 2014;78–79:49–52. Available from: https://www.sciencedirect.com/science/article/pii/S1359646214000372
  • [19] Wang X, Chen X, Gao L, Zheng H, Zhang Z, Qian Y. One-Dimensional Arrays of Co3O4 Nanoparticles:  Synthesis, Characterization, and Optical and Electrochemical Properties. J Phys Chem B [Internet]. 2004 Oct 1;108(42):16401–4. Available from: https://doi.org/10.1021/jp048016p
  • [20] Bhadwal AS, Tripathi RM, Gupta RK, Kumar N, Singh RP, Shrivastav A. Biogenic synthesis and photocatalytic activity of CdS nanoparticles. RSC Adv [Internet]. 2014;4(19):9484–90. Available from: http://dx.doi.org/10.1039/C3RA46221H
  • [21] Yetim NK, Aslan N, Sarıoğlu A, Sarı N, Koç MM. Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J Mater Sci Mater Electron [Internet]. 2020;31(15):12238–48. Available from: https://doi.org/10.1007/s10854-020-03769-x
  • [22] Yetim NK, Kurş F. Magnetic and Structural Characterization of Inorganic / Organic coated. J Mater Electron Devices. 2021;2:12–8. [23] Hu Y, Chen H-J. Preparation and characterization of nanocrystalline ZnO particles from a hydrothermal process. J Nanoparticle Res [Internet]. 2008;10(3):401–7. Available from: https://doi.org/10.1007/s11051-007-9264-0
  • [24] Kulkarni SA, Sawadh PS, Palei PK, Kokate KK. Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int [Internet]. 2014;40(1, Part B):1945–9. Available from: https://www.sciencedirect.com/science/article/pii/S0272884213008973
  • [25] Sin J-C, Tan S-Q, Quek J-A, Lam S-M, Mohamed AR. Facile fabrication of hierarchical porous ZnO/Fe3O4 composites with enhanced magnetic, photocatalytic and antibacterial properties. Mater Lett [Internet]. 2018;228:207–11. Available from: https://www.sciencedirect.com/science/article/pii/S0167577X18309340
  • [26] Koç MM, Aslan N, Kao AP, Barber AH. Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc Res Tech. 2019;82(6):812–48.
  • [27] Aslan N, Ceylan B, Koç MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct [Internet]. 2020;1219:128599. Available from: https://www.sciencedirect.com/science/article/pii/S0022286020309248
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Naim Aslan 0000-0002-1159-1673

Yayımlanma Tarihi 25 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Aslan, N. (2022). Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method. Türk Doğa Ve Fen Dergisi, 11(1), 95-101. https://doi.org/10.46810/tdfd.1011220
AMA Aslan N. Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method. TDFD. Mart 2022;11(1):95-101. doi:10.46810/tdfd.1011220
Chicago Aslan, Naim. “Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method”. Türk Doğa Ve Fen Dergisi 11, sy. 1 (Mart 2022): 95-101. https://doi.org/10.46810/tdfd.1011220.
EndNote Aslan N (01 Mart 2022) Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method. Türk Doğa ve Fen Dergisi 11 1 95–101.
IEEE N. Aslan, “Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method”, TDFD, c. 11, sy. 1, ss. 95–101, 2022, doi: 10.46810/tdfd.1011220.
ISNAD Aslan, Naim. “Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method”. Türk Doğa ve Fen Dergisi 11/1 (Mart 2022), 95-101. https://doi.org/10.46810/tdfd.1011220.
JAMA Aslan N. Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method. TDFD. 2022;11:95–101.
MLA Aslan, Naim. “Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method”. Türk Doğa Ve Fen Dergisi, c. 11, sy. 1, 2022, ss. 95-101, doi:10.46810/tdfd.1011220.
Vancouver Aslan N. Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method. TDFD. 2022;11(1):95-101.

Cited By