Araştırma Makalesi
BibTex RIS Kaynak Göster

Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison

Yıl 2022, , 113 - 117, 29.06.2022
https://doi.org/10.46810/tdfd.1113394

Öz

Keratin is a fibrous, structured protein that constitutes the basis of different structures such as nails, hair, beak, wool, feathers, claws, and horns. Until now, keratin isolation has been carried out from waste wool, feather, hoof and hair. However, the development of effective techniques to obtain keratin without any damage to the secondary structure of the protein remains a challenging task. Here in, two distinct keratin isolation methods (Na2S and EDTA) were compared for the first time from Domestic Goose (Anser domesticus) feathers. Kjeldahl method was used for the determination of crude protein from the obtained keratin powders by two methods, and antioxidant activity of keratin powders was conducted. Our findings suggest that Na2S method displayed the best keratin yield (86.34%) from goose feather; however, antioxidant activity of EDTA method was nearly three times higher than Na2S method, which could be taking into consideration as a potential keratin source for future studies.

Destekleyen Kurum

Yok

Proje Numarası

Yok

Teşekkür

Many thanks to Anadolukaz Meat Integrated Facilities Industry and Trade Limited Company for providing feather samples.

Kaynakça

  • [1] Sharma S, Gupta A. Sustainable management of keratin waste biomass: applications and future perspectives. Braz. Arch. Biol. Technol. 2016; 59.
  • [2] Shavandi A, Carne A, Bekhit AA, and Bekhit AE-DA. An improved method for solubilisation of wool keratin using peracetic acid. J. Environ. Chem. Eng. 2017;5:1977-1984.
  • [3] Adelere IA, Lateef A. Degradation of keratin biomass by different microorganisms. Keratin as a Protein. Biopolymer. 2019;123-162. [4] Fan X.Value-added products from chicken feather fiber and protein [dissertation]. Auburn University ProQuest; 2008.
  • [5] Akkanat Ö. Keratin temelli biyokompozit sentezi [dissertation]. Istanbul Technic University; 2016.
  • [6] Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J. Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J. Agric. Food Chem. 2000;48(9), 4326-4334.
  • [7] Zeydanlı S. Keratın esaslı poli (akrilo nitril-ko-etilen glikol) sentezi ve karakterizasyonu [dissertation]. Istanbul Technic University; 2014.
  • [8] Bruice PY. Organic chemistry, 4th Ed., Prentice Hall, Upper Saddle River, NJ. Coll R.K; 2004.
  • [9] Tonin C, Zoccola M, Aluigi A, Varesano A, Montarsolo A, Vineis C, Zimbardi F. Study on the conversion of wool keratin by steam explosion. Biomacromolecules, 2006;7(12), 3499-3504.
  • [10] Su C, Gong JS, Ye JP, He JM, Li RY, Jiang M, et al. Enzymatic Extraction of bioactive and self‐assembling wool keratin for biomedical applications. Macromol. Biosci. 2020;20(9), 2000073.
  • [11] Tsuda Y, Nomura Y. Properties of alkaline‐hydrolyzed waterfowl feather keratin. Anim. Sci. J. 2014;85(2), 180-185.
  • [12] Buchanan JH. A cystine-rich protein fraction from oxidized alpha-keratin. Biochem. J. 1977;167(2), 489.
  • [13] Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J. Biomed. Mater. Res. An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials. 1996;31(4), 439-444.
  • [14] Ghosh A, Clerens S, Deb-Choudhury S, Dyer JM. Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratinPolym. Degrad. Stab. 2014;108, 108-115.
  • [15] Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik SMSBT, Gupta R. Statistical investigation of extraction parameters of keratin from chicken feather using Design-Expert. 3 Biotech. 2017;7(2), 1-9.
  • [16] Poole AJ, Lyons RE, Church JS. Dissolving feather keratin using sodium sulfide for bio-polymer applications. J Polym Environ. 2011;19(4), 995-1004.
  • [17] Jones CB, Mecham DK. The dispersion of keratins. II. Studies on the dispersion of keratins by reduction in neutral solutions of protein denaturants. Arch Biochem. 1943;3, 193.
  • [18] Kalaoğlu Öİ. Tavuk tüyü keratininden tekstil elyaf eldesi [dissertation]. Istanbul Technic University; 2010 [19] Bradstreet RB. Kjeldahl method for organic nitrogen. Anal. Chem. 1954;26:185-187.
  • [20] Salo-väänänen PP, Koivistoinen PE. Determination of protein in foods: comparison of net protein and crude protein (N× 6.25) values. Food Chem. 1996;57:27-31.
  • [21] Kaya M, Khadem S, Cakmak YS, Mujtaba M, Ilk S, Akyuz L, et al. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv. 2018;8(8), 3941–3950.
  • [22] Schmidt W, Line M. Physical and chemical structures of poultry feather fiber fractions in fiber process development, Nonwovens. Conference, Atlanta, GA, USA. 1996. p. 135-140.
  • [23] Sharma S, Gupta A, Kumar A, Kee CG, Kamyab H, Saufi SM. An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol Environ Policy. 2018;20(10), 2157-2167.
  • [24] Pourjavaheri F, Pour SO, Jones OA, Smooker PM, Brkljača R, Sherkat F, et al. Extraction of keratin from waste chicken feathers using sodium sulfide and l-cysteine. Process Biochem. 2019;82, 205-214.
  • [25] Alahyaribeik S, Ullah A. Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin. Int. J. Biol. Macromol. 2020;148, 449-456.
  • [26] Gül Çelik M, Hakan Morcali M, Ayhan Ziba C, Dolaz M. Valorization of chicken Feather waste: fabrication of keratin‐chitosan biofilms. ChemistrySelect. 2021;6(9), 2189-2197.
  • [27] Sinkiewicz I, Śliwińska A, Staroszczyk H, Kołodziejska I. Alternative methods of preparation of soluble keratin from chicken feathers. Waste Biomass Valorization. 2017;8(4), 1043-1048.
  • [28] Rosewald M, Hou FYS. m Mututuvari T, Harkins A, d Tran C. Cellulose-chitosan-keratin composite materials: synthesis, immunological and antibacterial properties. ECS Trans. 2014;64(4), 499.
  • [29] Gupta A, Kamarudin NB, Kee CYG, Yunus RBM. Extraction of keratin protein from chicken feather. J. Chem. Chem. Eng. 2012;6(8), 732.

Atık Kaz Tüyünden Keratin İzolasyon Yöntemleri: Etkili Bir Karşılaştırma

Yıl 2022, , 113 - 117, 29.06.2022
https://doi.org/10.46810/tdfd.1113394

Öz

Biyoatıkların katma değerli malzemeye dönüştürülmesi son zamanlarda büyük ilgi görmektedir. Bu maddelerden biri de tırnak, saç, gaga, yün, tüy, pençe ve boynuz gibi farklı yapılarda bulunan keratindir. Şimdiye kadar atık yün, tüy, toynak ve saçtan keratin izolasyonu yapılmıştır. Bununla birlikte, proteinin ikincil yapısına herhangi bir zarar vermeden keratin elde etmek için etkili tekniklerin geliştirilmesi zorlu bir süreç olmaya devam etmektedir. Burada, Yerli Kaz (Anser domesticus) atık tüylerinden ilk kez iki farklı keratin izolasyon yöntemi (sodyum sülfür ve etilendiamin tetraasetik asit) karşılaştırılmıştır. Elde edilen keratin tozlarından ham protein tayini için Kjeldahl yöntemi kullanılmış ve antioksidan aktiviteleri belirlenmiştir. Bulgularımıza göre kaz tüyünden sodyum sülfür kullanılarak elde edilen keratin daha yüksek verim (%86,34) göstermiştir. Öte yandan, etilendiamin tetraasetik asit kullanılarak hazırlanan yöntemden elde edilen keratinin antioksidan aktivitesinin diğer yönteme göre yaklaşık üç kat daha yüksek olduğu tespit edilmiş ve sonuçlarımız atık kaz tüyünün ileriki çalışmalar için potansiyel bir keratin kaynağı olarak kabul edilebileceğini kanıtlamıştır.

Proje Numarası

Yok

Kaynakça

  • [1] Sharma S, Gupta A. Sustainable management of keratin waste biomass: applications and future perspectives. Braz. Arch. Biol. Technol. 2016; 59.
  • [2] Shavandi A, Carne A, Bekhit AA, and Bekhit AE-DA. An improved method for solubilisation of wool keratin using peracetic acid. J. Environ. Chem. Eng. 2017;5:1977-1984.
  • [3] Adelere IA, Lateef A. Degradation of keratin biomass by different microorganisms. Keratin as a Protein. Biopolymer. 2019;123-162. [4] Fan X.Value-added products from chicken feather fiber and protein [dissertation]. Auburn University ProQuest; 2008.
  • [5] Akkanat Ö. Keratin temelli biyokompozit sentezi [dissertation]. Istanbul Technic University; 2016.
  • [6] Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J. Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J. Agric. Food Chem. 2000;48(9), 4326-4334.
  • [7] Zeydanlı S. Keratın esaslı poli (akrilo nitril-ko-etilen glikol) sentezi ve karakterizasyonu [dissertation]. Istanbul Technic University; 2014.
  • [8] Bruice PY. Organic chemistry, 4th Ed., Prentice Hall, Upper Saddle River, NJ. Coll R.K; 2004.
  • [9] Tonin C, Zoccola M, Aluigi A, Varesano A, Montarsolo A, Vineis C, Zimbardi F. Study on the conversion of wool keratin by steam explosion. Biomacromolecules, 2006;7(12), 3499-3504.
  • [10] Su C, Gong JS, Ye JP, He JM, Li RY, Jiang M, et al. Enzymatic Extraction of bioactive and self‐assembling wool keratin for biomedical applications. Macromol. Biosci. 2020;20(9), 2000073.
  • [11] Tsuda Y, Nomura Y. Properties of alkaline‐hydrolyzed waterfowl feather keratin. Anim. Sci. J. 2014;85(2), 180-185.
  • [12] Buchanan JH. A cystine-rich protein fraction from oxidized alpha-keratin. Biochem. J. 1977;167(2), 489.
  • [13] Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J. Biomed. Mater. Res. An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials. 1996;31(4), 439-444.
  • [14] Ghosh A, Clerens S, Deb-Choudhury S, Dyer JM. Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratinPolym. Degrad. Stab. 2014;108, 108-115.
  • [15] Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik SMSBT, Gupta R. Statistical investigation of extraction parameters of keratin from chicken feather using Design-Expert. 3 Biotech. 2017;7(2), 1-9.
  • [16] Poole AJ, Lyons RE, Church JS. Dissolving feather keratin using sodium sulfide for bio-polymer applications. J Polym Environ. 2011;19(4), 995-1004.
  • [17] Jones CB, Mecham DK. The dispersion of keratins. II. Studies on the dispersion of keratins by reduction in neutral solutions of protein denaturants. Arch Biochem. 1943;3, 193.
  • [18] Kalaoğlu Öİ. Tavuk tüyü keratininden tekstil elyaf eldesi [dissertation]. Istanbul Technic University; 2010 [19] Bradstreet RB. Kjeldahl method for organic nitrogen. Anal. Chem. 1954;26:185-187.
  • [20] Salo-väänänen PP, Koivistoinen PE. Determination of protein in foods: comparison of net protein and crude protein (N× 6.25) values. Food Chem. 1996;57:27-31.
  • [21] Kaya M, Khadem S, Cakmak YS, Mujtaba M, Ilk S, Akyuz L, et al. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv. 2018;8(8), 3941–3950.
  • [22] Schmidt W, Line M. Physical and chemical structures of poultry feather fiber fractions in fiber process development, Nonwovens. Conference, Atlanta, GA, USA. 1996. p. 135-140.
  • [23] Sharma S, Gupta A, Kumar A, Kee CG, Kamyab H, Saufi SM. An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol Environ Policy. 2018;20(10), 2157-2167.
  • [24] Pourjavaheri F, Pour SO, Jones OA, Smooker PM, Brkljača R, Sherkat F, et al. Extraction of keratin from waste chicken feathers using sodium sulfide and l-cysteine. Process Biochem. 2019;82, 205-214.
  • [25] Alahyaribeik S, Ullah A. Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin. Int. J. Biol. Macromol. 2020;148, 449-456.
  • [26] Gül Çelik M, Hakan Morcali M, Ayhan Ziba C, Dolaz M. Valorization of chicken Feather waste: fabrication of keratin‐chitosan biofilms. ChemistrySelect. 2021;6(9), 2189-2197.
  • [27] Sinkiewicz I, Śliwińska A, Staroszczyk H, Kołodziejska I. Alternative methods of preparation of soluble keratin from chicken feathers. Waste Biomass Valorization. 2017;8(4), 1043-1048.
  • [28] Rosewald M, Hou FYS. m Mututuvari T, Harkins A, d Tran C. Cellulose-chitosan-keratin composite materials: synthesis, immunological and antibacterial properties. ECS Trans. 2014;64(4), 499.
  • [29] Gupta A, Kamarudin NB, Kee CYG, Yunus RBM. Extraction of keratin protein from chicken feather. J. Chem. Chem. Eng. 2012;6(8), 732.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Emel Çakmak 0000-0002-6231-1950

Proje Numarası Yok
Yayımlanma Tarihi 29 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çakmak, E. (2022). Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison. Türk Doğa Ve Fen Dergisi, 11(2), 113-117. https://doi.org/10.46810/tdfd.1113394
AMA Çakmak E. Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison. TDFD. Haziran 2022;11(2):113-117. doi:10.46810/tdfd.1113394
Chicago Çakmak, Emel. “Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison”. Türk Doğa Ve Fen Dergisi 11, sy. 2 (Haziran 2022): 113-17. https://doi.org/10.46810/tdfd.1113394.
EndNote Çakmak E (01 Haziran 2022) Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison. Türk Doğa ve Fen Dergisi 11 2 113–117.
IEEE E. Çakmak, “Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison”, TDFD, c. 11, sy. 2, ss. 113–117, 2022, doi: 10.46810/tdfd.1113394.
ISNAD Çakmak, Emel. “Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison”. Türk Doğa ve Fen Dergisi 11/2 (Haziran 2022), 113-117. https://doi.org/10.46810/tdfd.1113394.
JAMA Çakmak E. Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison. TDFD. 2022;11:113–117.
MLA Çakmak, Emel. “Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison”. Türk Doğa Ve Fen Dergisi, c. 11, sy. 2, 2022, ss. 113-7, doi:10.46810/tdfd.1113394.
Vancouver Çakmak E. Keratin Isolation Methods From Waste Goose Feather: An Effective Comparison. TDFD. 2022;11(2):113-7.