Araştırma Makalesi
BibTex RIS Kaynak Göster

The Use of Rheum Ribes (Işgın) Extracts for Copper Protection in Acidic Media

Yıl 2022, , 94 - 101, 29.09.2022
https://doi.org/10.46810/tdfd.1166367

Öz

The extracts of different parts of ışgın such as flower (RRF), leaf (RRL), and root (RRR) were prepared and their protective effects on copper corrosion in an acidic media were investigated in this study. Other components that are not currently in use will thus be able to be transformed into benefits. Extracts from various parts of the plant were dissolved in a 1 M HCl solution at a concentration of 1000 ppm for this purpose. The time variation of open circuit potential (Eocp-t), linear polarisation resistance (LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarisation (PP) techniques were used to investigate the electrochemical behaviour of copper metal in these solutions. The surface of copper was examined after corrosive medium treatment using a scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and contact angle measurements. The results revealed that the effects of extracts obtained from different parts of the RR on the behavior of copper in an acidic medium varied. The best protection was provided by the RRF extract. Despite this, RRR extract failed to protect Cu from corrosive ions in 1 M HCl solution. According to surface analyses, the plant extracts formed an adherent and compact organic film on the Cu surface.

Destekleyen Kurum

The authors are greatly thankful to Bingöl University Scientific Research Projects Coordination Unit (BÜBAP)

Proje Numarası

FEF.2017.00.012

Teşekkür

The authors are greatly thankful to Bingöl University Scientific Research Projects Coordination Unit (BÜBAP) (Project Number: FEF.2017.00.012) for financial support and Bingöl University Central Laboratory for characterization measurements.

Kaynakça

  • [1] Xu Q, Ge K, Zhang S, Tan B.Understanding the adsorption and inhibitive properties of Nitrogen-Doped Carbon Dots for copper in 0.5 M H2SO4 solution. J. Taiwan Inst. Chem. Eng. 2021; 125, 23-34.
  • [2] Li Y, Chen H, Tan B, Xiang B, Zhang S, Luo W, Zhang Y, Zhang J. Three piperazine compounds as corrosion inhibitors for copper in 0.5 M sulfuric acid medium. J. Taiwan Inst. Chem. Eng. 2021; 126, 231-43.
  • [3] Zeng W, Lia W, Tan B, Liu J, Chen J. A research combined theory with experiment of 2-amino-6-(methylsulfonyl)benzothiazole as an excellent corrosion inhibitor for copper in H2SO4 medium. J. Taiwan Inst. Chem. Eng. 2021; 128, 417-29.
  • [4] Pan YC, Wen Y, Xue LY, Guo XY, Yang HF. Adsorption behavior of methimazole monolayers on a copper surface and its corrosion inhibition. J. Phys. Chem. C. 2012; 116, 3532−38.
  • [5] Ma HY, Yang C, Chen SH, Jiao YL, Huang SX, Li DG, Luo JL. Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions. Electrochim. Acta. 2003; 48, 4277–89.
  • [6] Hajjaji FEL, Salim R, Ech-chihbi E, Titi A, Messali M, Kaya S, El Ibrahimi B, Taleb M. New imidazolium ionic liquids as ecofriendly corrosion inhibitors for mild steel in hydrochloric acid (1 M): Experimental and theoretical approach. J. Taiwan Inst. Chem. Eng. 2021; 123, 346-62.
  • [7] Khaled F. Corrosion control of copper in nitric acid solutions using some amino acids: A combined experimental and theoretical study. Corros. Sci. 2010; 52, 3225–34.
  • [8] Amin MA, Ibrahim MM. Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative. Corros. Sci. 2011; 53, 873–85.
  • [9] Wan S, Zhang T, Chen H, Liao B, Guo X. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium. Ind. Crops Prod. 2022; 178, 114649.
  • [10] Jokar M, Farahani TS, Ramezanzadeh B. Electrochemical and surface characterizations of morus alba pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1M HCl. J. Taiwan Inst. Chem. Eng. 2016; 63, 436-52.
  • [11] Bedair MA, Soliman SA, Metwally MS. Synthesis and characterization of some nonionic surfactants as corrosion inhibitors for steel in 1.0M HCl (Experimental and Computational study). Ind. Eng. Chem. 2016; 41, 10-22.
  • [12] Alinejad S, Naderi R, Mahdavian M. Effect of inhibition synergism of zinc chloride and 2-mercaptobenzoxzole on protective performance of an eco-friendly silane coating on mild steel. Ind. Eng. Chem. 2017; 48, 88-98.
  • [13] Da Silva MVL, de Britto Policarpi E, Spinelli A. Syzygium cumini leaf extract as an eco-friendly corrosion inhibitor for carbon steel in acidic medium. J. Taiwan Inst. Chem. Eng. 2021; 129, 342-9.
  • [14] El Ibrahimi AJ, Tahar BA, Chadili M, El Issami S, Jbara O, Khallaayoun A, Bazzi L. Application of Zizyphun Lotus-pulpe of jujube extract as green and promising corrosion inhibitor for copper acidic medium. J. Mol. Liq. 2018; 268,102-13.
  • [15] Rahal C, Masmoudi M, Abdelhedi R, Sabot R, Jeannin M, Bouaziz M, Refait P. Olive leaves extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: A study by voltammetry around OCP. J. Electroanal. Chem. 2016; 769, 53-61.
  • [16] Deyab MA. Egyptian licorice extract as a green corrosion inhibitor for copper in hydrochloric acid solution. J. Ind. Eng. Chem. 2015; 22, 384-9.
  • [17] Krishnaveni K, Ravichandran J. Influence of aqueous extract of leaves of Morinda tinctoria on copper corrosion in HCl medium. J. Electroanal. Chem. 2014; 735, 24-31.
  • [18] Shabani-Nooshabadi M, Hoseiny FS, Jafari Y. Green approach to corrosion inhibition of copper by the extract of Calligonum comosum in strong acidic medium, Metall. Mater. Trans. A. 2015; 46, 293-9.
  • [19] Shabani-Nooshabadi M, Hoseiny FS, Jafari Y. Corrosion inhibition of copper by Ephedera sacocarpa plant extract as green corrosion inhibitor in strong acidic medium. Anal. Bional. Electrochem. 2014; 6, 341-54.
  • [20] Raghavendra N. latest exploration on Natural Corrosion Inhibitors for Industrial Important Metals in Hostile Fluid Environments: A comprehensive overview. J. Bio. Tribo. Corros. 2019; 5, 54.
  • [21] Sanaei Z, Shahrabi T, Ramezanzadeh B. Synthesis and characterization of an effective green corrosion inhibitive hybrid pigment based on Zinc acetate-Cichorium intybus L leaves extract (ZnA-CIL.L): Electrochemical investigations on the synergistic corrosion inhibition of mild steel in aqueous chloride solutions. Dyes Pigm. 2017; 139, 218-32.
  • [22] Gerengi H, Uygur I, Solomon M, Yildiz M, Goksu H. Evaluation of the inhibitive effect of Diospyros kaki (Persimmon) leaves extract on St37 steel corrosion in acid medium. Sustainable Chem. Pharm. 2016; 4, 57-66.
  • [23] Davis PH,. Flora of Turkey and The East Aegean Islands. Vol. 2. Edinburg, Edinburgh University Press, 268, 1966.
  • [24] Baytop T.. Türkiyede Bitkiler ile Tedavi Istanbul, Istanbul Üniversitesi Yayınları, No 3255 - Eczacılık Fakültesi No 40, 358, 1984.
  • [25] Özbek H, Ceylan E, Kara ÖF, Koyuncu M.. Rheum ribes (Uskun) Kökü Ekstresinin Sağlıklı ve Diyabetli Farelerdeki Hipoglisemik Etkisi, 14. Bitkisel İlaç Hammaddeleri Toplantısı, Bildiriler, 29-31 Mayıs, Eskisehir, 2002.
  • [26] Tosun F, Akyüz KÇ. Anthraquinones and flavanoids from Rheum ribes. Ankara Ecz. Fak. Derg. 2003; 32(1), 31-5.
  • [27] Bazzaz BS, Khajenkaramadin M, Shokooheizadeh HR. In vitro antibacterial activity of Rheum ribes extract obtained from various plant parts against clinical isolates of gram nagative pathogens. Iran. J. Pharm. Res. 2005; 2, 87-91.
  • [28] Alaaddin AM, Al-Khateb EA, Jager AK.. Antibacterial activity of Iragi Rheum ribes root. Pharm. Bio. 2007; 45(9), 688-90.
  • [29] Andiç S, Tunçtürk Y, Ocak E, Köse Ş.. Some chamical characteristic of edible wild rhubarb species (Rheum ribes L.). Res. J. Agric. Biol. Sci. 2009; 5(6), 973-7.
  • [30] Munzuroğlu Ö, Karataş F, Gür N. Işgın (Rheum ribes L.) bitkisindeki A, E ve C vitaminleri ile selenyum düzeylerinin araştırılması. Turk J. Biol. 2000; 24,: 397-404.
  • [31] Kaya F, Geçibesler İH, Solmaz R. Corrosion inhibition of mild steel in 1 M HCI solution by Rheum Ribes L. (ışgın) flower extracts. XVth International Corrosion Symposium, Hatay, Turkey, 2018, p. 287-95.
  • [32] Dehghani A, Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M. Potential of Borage flower aqueous extract as an environmentally sustainable corrosion inhibitor for acid corrosion of mild steel: Electrochemical and theoretical studies. J. Mol. Liq. 2019; 277, 895-911.
  • [33] Asadi N, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B. Utilizing Lemon Balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: A detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study. J. Taiwan Inst. Chem. Eng. 2019; 95, 252-72.
  • [34] Kosec T, Milosˇev I, Pihlar B. Benzotriazole as an inhibitor of brass corrosion in chloride solution. Appl. Surf. Sci. 2007; 253, 8863–73.
  • [35] Sedik A, Lerari D, Salci A, Athmani S, Bachari K, Gecibesler İH, Solmaz R. Dardagan Fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: Electrochemical and surface morphological studies. J. Taiwan Inst. Chem. Eng. 2020; 107, 189-200.
  • [36] Rajkumar G, Sethuraman MG. A study of copper corrosion inhibition by selfassembled films of 3-mercapto-1H-1,2,4-triazole, Res. Chem. Intermed. 2016; 42, 1809–21.
  • [37] Qiang Y, Fu S, Zhang S, Chen S, Zou X. Designing and fabricating of single and double alkyl-chain indazole derivatives self-assembled monolayer for corrosion inhibition of copper. Corros. Sci. 2018; 140, 111–21.
  • [38] Liao Q Q, Yue ZW, Yang D, Wang ZH, Li ZH, Ge HH, Li YJ. Self-assembled monolayer of ammonium pyrrolidine dithiocabamate on copper detected using electrochemical methods, surface enhenced Raman scattering and quantum chemistry calculations. Thin Solid Films. 2011; 519, 6492-8.
  • [39] Liao QQ, Yue ZW, Yang D, Wang ZH, Li ZH, Ge HH, Li YJ. Inhibition of copper corrosion in sodium chloride solution by the self-assembled monolayer of sodium diethyldithiocarbamate. Corros. Sci.2011; 53, 1999–2005.

Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması

Yıl 2022, , 94 - 101, 29.09.2022
https://doi.org/10.46810/tdfd.1166367

Öz

Bu çalışmada, ışgının çiçek (RRF), yaprak (RRL) ve kök (RRR) gibi farklı bölgelerinin ayrı ayrı özütleri hazırlanarak asidik ortamda bakırın korozyonuna koruma etkileri incelenmiştir. Böylelikle ışgının kullanılmayan diğer kısımlarının da faydaya dönüştürülmesi mümkün olabilecektir. Bu amaçla, RR özütlerinin 1 M HCl çözeltisinde 1000 ppm çözeltileri hazırlanmıştır. Bakır metalinin bu çözeltilerdeki elektrokimyasal davranışları açık devre potansiyelinin zamanla değişimi (Eocp-t), elektrokimyasal impedans spektroskopisi (EIS), lineer polarizasyon direnci (LPR) ve potansiyodinamik polarizasyon (PP) teknikleri ile incelenmiştir. Bakırın korozif ortam ile muamelesi sonrasında yüzeyi taramalı elektron mikroskopu (SEM), enerji dağılımlı X-ışını spektroskopisi (EDX) ve temas açısı ölçümleri ile incelenmiştir. Elde edilen bulgular, RR’nin farklı bölgelerinden elde edilen özütlerin bakırın asidik ortamdaki davranışına etkilerinin farklı olduğunu göstermiştir. En iyi koruma RRF özütünde elde edilmiştir. RRR özütü ise bakırı 1 M HCl çözeltisinde korozyona karşı koruyamamaktadır. Yüzey analizleri bitki özütlerinin metal yüzeyinde koruyucu bir film oluşturduğunu göstermiştir.

Proje Numarası

FEF.2017.00.012

Kaynakça

  • [1] Xu Q, Ge K, Zhang S, Tan B.Understanding the adsorption and inhibitive properties of Nitrogen-Doped Carbon Dots for copper in 0.5 M H2SO4 solution. J. Taiwan Inst. Chem. Eng. 2021; 125, 23-34.
  • [2] Li Y, Chen H, Tan B, Xiang B, Zhang S, Luo W, Zhang Y, Zhang J. Three piperazine compounds as corrosion inhibitors for copper in 0.5 M sulfuric acid medium. J. Taiwan Inst. Chem. Eng. 2021; 126, 231-43.
  • [3] Zeng W, Lia W, Tan B, Liu J, Chen J. A research combined theory with experiment of 2-amino-6-(methylsulfonyl)benzothiazole as an excellent corrosion inhibitor for copper in H2SO4 medium. J. Taiwan Inst. Chem. Eng. 2021; 128, 417-29.
  • [4] Pan YC, Wen Y, Xue LY, Guo XY, Yang HF. Adsorption behavior of methimazole monolayers on a copper surface and its corrosion inhibition. J. Phys. Chem. C. 2012; 116, 3532−38.
  • [5] Ma HY, Yang C, Chen SH, Jiao YL, Huang SX, Li DG, Luo JL. Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions. Electrochim. Acta. 2003; 48, 4277–89.
  • [6] Hajjaji FEL, Salim R, Ech-chihbi E, Titi A, Messali M, Kaya S, El Ibrahimi B, Taleb M. New imidazolium ionic liquids as ecofriendly corrosion inhibitors for mild steel in hydrochloric acid (1 M): Experimental and theoretical approach. J. Taiwan Inst. Chem. Eng. 2021; 123, 346-62.
  • [7] Khaled F. Corrosion control of copper in nitric acid solutions using some amino acids: A combined experimental and theoretical study. Corros. Sci. 2010; 52, 3225–34.
  • [8] Amin MA, Ibrahim MM. Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative. Corros. Sci. 2011; 53, 873–85.
  • [9] Wan S, Zhang T, Chen H, Liao B, Guo X. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium. Ind. Crops Prod. 2022; 178, 114649.
  • [10] Jokar M, Farahani TS, Ramezanzadeh B. Electrochemical and surface characterizations of morus alba pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1M HCl. J. Taiwan Inst. Chem. Eng. 2016; 63, 436-52.
  • [11] Bedair MA, Soliman SA, Metwally MS. Synthesis and characterization of some nonionic surfactants as corrosion inhibitors for steel in 1.0M HCl (Experimental and Computational study). Ind. Eng. Chem. 2016; 41, 10-22.
  • [12] Alinejad S, Naderi R, Mahdavian M. Effect of inhibition synergism of zinc chloride and 2-mercaptobenzoxzole on protective performance of an eco-friendly silane coating on mild steel. Ind. Eng. Chem. 2017; 48, 88-98.
  • [13] Da Silva MVL, de Britto Policarpi E, Spinelli A. Syzygium cumini leaf extract as an eco-friendly corrosion inhibitor for carbon steel in acidic medium. J. Taiwan Inst. Chem. Eng. 2021; 129, 342-9.
  • [14] El Ibrahimi AJ, Tahar BA, Chadili M, El Issami S, Jbara O, Khallaayoun A, Bazzi L. Application of Zizyphun Lotus-pulpe of jujube extract as green and promising corrosion inhibitor for copper acidic medium. J. Mol. Liq. 2018; 268,102-13.
  • [15] Rahal C, Masmoudi M, Abdelhedi R, Sabot R, Jeannin M, Bouaziz M, Refait P. Olive leaves extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: A study by voltammetry around OCP. J. Electroanal. Chem. 2016; 769, 53-61.
  • [16] Deyab MA. Egyptian licorice extract as a green corrosion inhibitor for copper in hydrochloric acid solution. J. Ind. Eng. Chem. 2015; 22, 384-9.
  • [17] Krishnaveni K, Ravichandran J. Influence of aqueous extract of leaves of Morinda tinctoria on copper corrosion in HCl medium. J. Electroanal. Chem. 2014; 735, 24-31.
  • [18] Shabani-Nooshabadi M, Hoseiny FS, Jafari Y. Green approach to corrosion inhibition of copper by the extract of Calligonum comosum in strong acidic medium, Metall. Mater. Trans. A. 2015; 46, 293-9.
  • [19] Shabani-Nooshabadi M, Hoseiny FS, Jafari Y. Corrosion inhibition of copper by Ephedera sacocarpa plant extract as green corrosion inhibitor in strong acidic medium. Anal. Bional. Electrochem. 2014; 6, 341-54.
  • [20] Raghavendra N. latest exploration on Natural Corrosion Inhibitors for Industrial Important Metals in Hostile Fluid Environments: A comprehensive overview. J. Bio. Tribo. Corros. 2019; 5, 54.
  • [21] Sanaei Z, Shahrabi T, Ramezanzadeh B. Synthesis and characterization of an effective green corrosion inhibitive hybrid pigment based on Zinc acetate-Cichorium intybus L leaves extract (ZnA-CIL.L): Electrochemical investigations on the synergistic corrosion inhibition of mild steel in aqueous chloride solutions. Dyes Pigm. 2017; 139, 218-32.
  • [22] Gerengi H, Uygur I, Solomon M, Yildiz M, Goksu H. Evaluation of the inhibitive effect of Diospyros kaki (Persimmon) leaves extract on St37 steel corrosion in acid medium. Sustainable Chem. Pharm. 2016; 4, 57-66.
  • [23] Davis PH,. Flora of Turkey and The East Aegean Islands. Vol. 2. Edinburg, Edinburgh University Press, 268, 1966.
  • [24] Baytop T.. Türkiyede Bitkiler ile Tedavi Istanbul, Istanbul Üniversitesi Yayınları, No 3255 - Eczacılık Fakültesi No 40, 358, 1984.
  • [25] Özbek H, Ceylan E, Kara ÖF, Koyuncu M.. Rheum ribes (Uskun) Kökü Ekstresinin Sağlıklı ve Diyabetli Farelerdeki Hipoglisemik Etkisi, 14. Bitkisel İlaç Hammaddeleri Toplantısı, Bildiriler, 29-31 Mayıs, Eskisehir, 2002.
  • [26] Tosun F, Akyüz KÇ. Anthraquinones and flavanoids from Rheum ribes. Ankara Ecz. Fak. Derg. 2003; 32(1), 31-5.
  • [27] Bazzaz BS, Khajenkaramadin M, Shokooheizadeh HR. In vitro antibacterial activity of Rheum ribes extract obtained from various plant parts against clinical isolates of gram nagative pathogens. Iran. J. Pharm. Res. 2005; 2, 87-91.
  • [28] Alaaddin AM, Al-Khateb EA, Jager AK.. Antibacterial activity of Iragi Rheum ribes root. Pharm. Bio. 2007; 45(9), 688-90.
  • [29] Andiç S, Tunçtürk Y, Ocak E, Köse Ş.. Some chamical characteristic of edible wild rhubarb species (Rheum ribes L.). Res. J. Agric. Biol. Sci. 2009; 5(6), 973-7.
  • [30] Munzuroğlu Ö, Karataş F, Gür N. Işgın (Rheum ribes L.) bitkisindeki A, E ve C vitaminleri ile selenyum düzeylerinin araştırılması. Turk J. Biol. 2000; 24,: 397-404.
  • [31] Kaya F, Geçibesler İH, Solmaz R. Corrosion inhibition of mild steel in 1 M HCI solution by Rheum Ribes L. (ışgın) flower extracts. XVth International Corrosion Symposium, Hatay, Turkey, 2018, p. 287-95.
  • [32] Dehghani A, Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M. Potential of Borage flower aqueous extract as an environmentally sustainable corrosion inhibitor for acid corrosion of mild steel: Electrochemical and theoretical studies. J. Mol. Liq. 2019; 277, 895-911.
  • [33] Asadi N, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B. Utilizing Lemon Balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: A detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study. J. Taiwan Inst. Chem. Eng. 2019; 95, 252-72.
  • [34] Kosec T, Milosˇev I, Pihlar B. Benzotriazole as an inhibitor of brass corrosion in chloride solution. Appl. Surf. Sci. 2007; 253, 8863–73.
  • [35] Sedik A, Lerari D, Salci A, Athmani S, Bachari K, Gecibesler İH, Solmaz R. Dardagan Fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: Electrochemical and surface morphological studies. J. Taiwan Inst. Chem. Eng. 2020; 107, 189-200.
  • [36] Rajkumar G, Sethuraman MG. A study of copper corrosion inhibition by selfassembled films of 3-mercapto-1H-1,2,4-triazole, Res. Chem. Intermed. 2016; 42, 1809–21.
  • [37] Qiang Y, Fu S, Zhang S, Chen S, Zou X. Designing and fabricating of single and double alkyl-chain indazole derivatives self-assembled monolayer for corrosion inhibition of copper. Corros. Sci. 2018; 140, 111–21.
  • [38] Liao Q Q, Yue ZW, Yang D, Wang ZH, Li ZH, Ge HH, Li YJ. Self-assembled monolayer of ammonium pyrrolidine dithiocabamate on copper detected using electrochemical methods, surface enhenced Raman scattering and quantum chemistry calculations. Thin Solid Films. 2011; 519, 6492-8.
  • [39] Liao QQ, Yue ZW, Yang D, Wang ZH, Li ZH, Ge HH, Li YJ. Inhibition of copper corrosion in sodium chloride solution by the self-assembled monolayer of sodium diethyldithiocarbamate. Corros. Sci.2011; 53, 1999–2005.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatma Kaya 0000-0003-0783-5652

Ramazan Solmaz 0000-0002-9295-1203

İbrahim Halil Geçibesler 0000-0002-4473-2671

Proje Numarası FEF.2017.00.012
Yayımlanma Tarihi 29 Eylül 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kaya, F., Solmaz, R., & Geçibesler, İ. H. (2022). Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması. Türk Doğa Ve Fen Dergisi, 11(3), 94-101. https://doi.org/10.46810/tdfd.1166367
AMA Kaya F, Solmaz R, Geçibesler İH. Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması. TDFD. Eylül 2022;11(3):94-101. doi:10.46810/tdfd.1166367
Chicago Kaya, Fatma, Ramazan Solmaz, ve İbrahim Halil Geçibesler. “Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması”. Türk Doğa Ve Fen Dergisi 11, sy. 3 (Eylül 2022): 94-101. https://doi.org/10.46810/tdfd.1166367.
EndNote Kaya F, Solmaz R, Geçibesler İH (01 Eylül 2022) Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması. Türk Doğa ve Fen Dergisi 11 3 94–101.
IEEE F. Kaya, R. Solmaz, ve İ. H. Geçibesler, “Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması”, TDFD, c. 11, sy. 3, ss. 94–101, 2022, doi: 10.46810/tdfd.1166367.
ISNAD Kaya, Fatma vd. “Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması”. Türk Doğa ve Fen Dergisi 11/3 (Eylül 2022), 94-101. https://doi.org/10.46810/tdfd.1166367.
JAMA Kaya F, Solmaz R, Geçibesler İH. Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması. TDFD. 2022;11:94–101.
MLA Kaya, Fatma vd. “Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması”. Türk Doğa Ve Fen Dergisi, c. 11, sy. 3, 2022, ss. 94-101, doi:10.46810/tdfd.1166367.
Vancouver Kaya F, Solmaz R, Geçibesler İH. Rheum Ribes (Işgın) Özütlerinin Asidik Ortamda Bakırın Korunması için Kullanılması. TDFD. 2022;11(3):94-101.