Araştırma Makalesi
BibTex RIS Kaynak Göster

Paladyum kaplı çok duvarlı karbon nanotüp tabanlı yüksek yanıtlı hidrojen gazı sensörü

Yıl 2023, , 86 - 92, 28.12.2023
https://doi.org/10.46810/tdfd.1326766

Öz

Sıfır karbon ayak izine sahip olan H2'nin gelecekte ana enerji kaynaklarından biri olması bekleniyor. Taşıma, depolama ve enerji üretim süreçlerinde H2'nin hassas tespiti bu kaynağın aktif olarak kullanılmasını sağlayacaktır. Son zamanlarda nanotüp şeklindeki yapıların yüksek tepkili gaz sensörleri olarak kullanıldığı birçok çalışma bulunmaktadır. Bu çalışmada, cam altlık üzerinde spin kaplama yöntemi ile büyütülen ve daha sonra DC püskürtme ile Pd kaplanan çok duvarlı karbon nanotüpün (MWCNT) farklı sıcaklıklardaki (150, 200 ve 250 ºC) H2 gazı tepki parametreleri incelenmiştir. Ölçümler akıma duyarlı gaz sensör sistemi yardımıyla 1000 ppm gaz konsantrasyonunda yapılmıştır. Üretilen filmin kristalografik yapısı, element içeriği, oksidasyon seviyeleri ve yüzey morfolojik özellikleri XRS, XPS ve SEM analizleri ile belirlenmiştir. XRD ve XPS analizleri, çalışmada kullanılan MWCNT'nin iyi grafitleştiğini ve Pd kaplama ile yapıda PdO bileşiği oluşumunu desteklemektedir. Sıcaklığa bağlı H2 gazı algılama ölçümleri, üretilen Pd-MWCNT yapısının çok yüksek bir gaz tepkisine sahip olduğunu ve en yüksek tepkinin 200 °C'de olduğunu göstermiştir. Elde edilen tepki değerleri literatürdeki diğer Pd-CNT yapılarının sonuçları ile karşılaştırıldığında, ekonomik spin kaplama yöntemi ile üretilen filmin çok yüksek gaz tepkisine sahip olduğu belirlenmiştir.

Kaynakça

  • Yoo IH, Kalanur SS, Seo H. Deposition of Pd nanoparticles on MWCNTs: Green approach and application to hydrogen sensing. J Alloys Compd. 2019;788:936–43.
  • Elam C. Realizing the hydrogen future: The International Energy Agency’s efforts to advance hydrogen energy technologies. Int J Hydrog Energy. 2003;28(6):601–7.
  • Gu H, Wang Z, Hu Y. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors. 2012;12(5):5517–50.
  • Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy L, Truchlý M, et al. Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens Actuators B Chem. 2017;240:1058–65.
  • Li Z, Yao Z, Haidry AA, Plecenik T, Xie L, Sun L, et al. Resistive-type hydrogen gas sensor based on TiO2: A review. Int J Hydrog Energy. 2018;43(45):21114–32.
  • Haidry A, Schlosser P, Durina P, Mikula M, Tomasek M, Plecenik T, et al. Hydrogen gas sensors based on nanocrystalline TiO2 thin films. Open Phys. 2014;14; 9(5).
  • Ceviz Şakar B. Influence of the Cu doping on the physical and H2 gas sensing properties of TiO2. Int J Hydrog Energy. 2024;50(Part A):1197-208
  • Xu K, Liao N, Xue W, Zhou H. First principles investigation on MoO3 as room temperature and high temperature hydrogen gas sensor. Int J Hydrog Energy. 2020; 45(15):9252–9.
  • Mirzaei A, Kim JH, Kim HW, Kim SS. Gasochromic WO3 Nanostructures for the Detection of Hydrogen Gas: An Overview. Appl Sci. 2019;29;9(9):1775.
  • Wu CH, Zhu Z, Huang SY, Wu RJ. Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. J Alloys Compd. 2019;776:965–73.
  • Katsuki A, Fukui K. H2 selective gas sensor based on SnO2. Sens Actuators B Chem. 1998;52(1–2):30–7.
  • Lu S, Zhang Y, Liu J, Li HY, Hu Z, Luo X, et al. Sensitive H2 gas sensors based on SnO2 nanowires. Sens Actuators B Chem. 2021;345:130334.
  • Al-Hardan NH, Abdullah MJ, Aziz AA. Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films. Int J Hydrog Energy. 2010;35(9):4428–34.
  • Lupan O, Chai G, Chow L.el hydrogen gas sensor based on single ZnO nanorod. Microelectron Eng. 2008;85(11):2220–5.
  • Hong J, Lee S, Seo J, Pyo S, Kim J, Lee T. A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Appl Mater Interfaces. 2015;18; 7(6):3554–61.
  • Han T, Nag A, Chandra Mukhopadhyay S, Xu Y. Carbon nanotubes and its gas-sensing applications: A review. Sens Actuators Phys. 2019; 291:107–43.
  • Wong EW, Sheehan PE, Lieber CM. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. science, 1997;277(5334):1971-1975.
  • Akbaba U, Kasapoğlu AE, Gür E. Gamma and neutron irradiation effects on multi-walled carbon nanotubes. Diam Relat Mater. 2018;87:242–7.
  • Şakar E, Akbaba U, Zukowski E, Gürol A. Gamma and neutron radiation effect on Compton profile of the multi-walled carbon nanotubes. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2018;437:20–6.
  • Kong J, Chapline MG, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater. 2001;13(18):1384–6.
  • Zilli D, Bonelli PR, Cukierman AL. Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films. Sens Actuators B Chem. 2011;157(1):169–76.
  • Sun Y, Wang HH. High-Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles. Adv Mater. 2007 5;19(19):2818–23.
  • Xiao M, Liang S, Han J, Zhong D, Liu J, Zhang Z, et al. Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit. ACS Sens. 2018;27;3(4):749–56.
  • Mubeen S, Zhang T, Yoo B, Deshusses MA, Myung NV. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. J Phys Chem C. 2007;111(17):6321–7.
  • Sun Y, Wang HH, Xia M. Single-Walled Carbon Nanotubes Modified with Pd Nanoparticles: Unique Building Blocks for High-Performance, Flexible Hydrogen Sensors. J Phys Chem C. 2008;112(4):1250–9.
  • Atchudan R, Pandurangan A, Joo J. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites. J Nanosci Nanotechnol. 2015;1; 15(6):4255–67.
  • Girma HG, Park KH, Ji D, Kim Y, Lee HM, Jeon S, et al. Room‐Temperature Hydrogen Sensor with High Sensitivity and Selectivity using Chemically Immobilized Monolayer Single‐Walled Carbon Nanotubes. Adv Funct Mater. 2023;33(18):2213381.
  • Wang Y, Liu B, Xiao S, Li Wang L, Cai D,Wang D, et al. High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide. J. Mater. Chem. A. 2015; 3(3):1317-24,
  • Baek DH, Kim J. MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens Actuators B Chem. 2017;250:686–91.
  • Chung MG, Kim DH, Seo DK, Kim T, Im HU, Lee HM, et al. Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens Actuators B Chem. 2012;169:387–92.

High response hydrogen gas sensor based on palladium coated multi-walled carbon nanotube

Yıl 2023, , 86 - 92, 28.12.2023
https://doi.org/10.46810/tdfd.1326766

Öz

H2, which has a zero-carbon footprint, is expected to be one of the main energy sources in the future. The sensitive detection of H2 in the transportation, storage and energy production processes will allow the active use of this resource. Recently, there are many studies in which nanotube-shaped structures are used as high-response gas sensors. In this study, H2 gas response parameters at different temperatures (150, 200 and 250 ºC) of multi-walled carbon nanotube (MWCNT), which were grown on quartz substrate by spin coating method and then Pd coated with DC sputtering, were investigated. The measurements were made at a gas concentration of 1000 ppm with the help of a current-sensitive gas sensor system. The crystallographic structure, elemental content, oxidation levels and surface morphological properties of the produced film were determined by XRS, XPS and SEM analysis. XRD and XPS analyzes support that the MWCNT used in the study is well graphitized and the formation of PdO compound in the structure with Pd coating. The temperature-dependent H2 gas sensing measurements showed that the produced Pd-MWCNT structure had a very high gas response and the highest response was at 200 °C. Comparing the response values obtained with the results of other Pd-CNT structures in the literature, it was determined that the film produced by the economical spin coating method had a very high gas response.

Kaynakça

  • Yoo IH, Kalanur SS, Seo H. Deposition of Pd nanoparticles on MWCNTs: Green approach and application to hydrogen sensing. J Alloys Compd. 2019;788:936–43.
  • Elam C. Realizing the hydrogen future: The International Energy Agency’s efforts to advance hydrogen energy technologies. Int J Hydrog Energy. 2003;28(6):601–7.
  • Gu H, Wang Z, Hu Y. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors. 2012;12(5):5517–50.
  • Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy L, Truchlý M, et al. Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens Actuators B Chem. 2017;240:1058–65.
  • Li Z, Yao Z, Haidry AA, Plecenik T, Xie L, Sun L, et al. Resistive-type hydrogen gas sensor based on TiO2: A review. Int J Hydrog Energy. 2018;43(45):21114–32.
  • Haidry A, Schlosser P, Durina P, Mikula M, Tomasek M, Plecenik T, et al. Hydrogen gas sensors based on nanocrystalline TiO2 thin films. Open Phys. 2014;14; 9(5).
  • Ceviz Şakar B. Influence of the Cu doping on the physical and H2 gas sensing properties of TiO2. Int J Hydrog Energy. 2024;50(Part A):1197-208
  • Xu K, Liao N, Xue W, Zhou H. First principles investigation on MoO3 as room temperature and high temperature hydrogen gas sensor. Int J Hydrog Energy. 2020; 45(15):9252–9.
  • Mirzaei A, Kim JH, Kim HW, Kim SS. Gasochromic WO3 Nanostructures for the Detection of Hydrogen Gas: An Overview. Appl Sci. 2019;29;9(9):1775.
  • Wu CH, Zhu Z, Huang SY, Wu RJ. Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. J Alloys Compd. 2019;776:965–73.
  • Katsuki A, Fukui K. H2 selective gas sensor based on SnO2. Sens Actuators B Chem. 1998;52(1–2):30–7.
  • Lu S, Zhang Y, Liu J, Li HY, Hu Z, Luo X, et al. Sensitive H2 gas sensors based on SnO2 nanowires. Sens Actuators B Chem. 2021;345:130334.
  • Al-Hardan NH, Abdullah MJ, Aziz AA. Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films. Int J Hydrog Energy. 2010;35(9):4428–34.
  • Lupan O, Chai G, Chow L.el hydrogen gas sensor based on single ZnO nanorod. Microelectron Eng. 2008;85(11):2220–5.
  • Hong J, Lee S, Seo J, Pyo S, Kim J, Lee T. A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Appl Mater Interfaces. 2015;18; 7(6):3554–61.
  • Han T, Nag A, Chandra Mukhopadhyay S, Xu Y. Carbon nanotubes and its gas-sensing applications: A review. Sens Actuators Phys. 2019; 291:107–43.
  • Wong EW, Sheehan PE, Lieber CM. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. science, 1997;277(5334):1971-1975.
  • Akbaba U, Kasapoğlu AE, Gür E. Gamma and neutron irradiation effects on multi-walled carbon nanotubes. Diam Relat Mater. 2018;87:242–7.
  • Şakar E, Akbaba U, Zukowski E, Gürol A. Gamma and neutron radiation effect on Compton profile of the multi-walled carbon nanotubes. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2018;437:20–6.
  • Kong J, Chapline MG, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater. 2001;13(18):1384–6.
  • Zilli D, Bonelli PR, Cukierman AL. Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films. Sens Actuators B Chem. 2011;157(1):169–76.
  • Sun Y, Wang HH. High-Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles. Adv Mater. 2007 5;19(19):2818–23.
  • Xiao M, Liang S, Han J, Zhong D, Liu J, Zhang Z, et al. Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit. ACS Sens. 2018;27;3(4):749–56.
  • Mubeen S, Zhang T, Yoo B, Deshusses MA, Myung NV. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. J Phys Chem C. 2007;111(17):6321–7.
  • Sun Y, Wang HH, Xia M. Single-Walled Carbon Nanotubes Modified with Pd Nanoparticles: Unique Building Blocks for High-Performance, Flexible Hydrogen Sensors. J Phys Chem C. 2008;112(4):1250–9.
  • Atchudan R, Pandurangan A, Joo J. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites. J Nanosci Nanotechnol. 2015;1; 15(6):4255–67.
  • Girma HG, Park KH, Ji D, Kim Y, Lee HM, Jeon S, et al. Room‐Temperature Hydrogen Sensor with High Sensitivity and Selectivity using Chemically Immobilized Monolayer Single‐Walled Carbon Nanotubes. Adv Funct Mater. 2023;33(18):2213381.
  • Wang Y, Liu B, Xiao S, Li Wang L, Cai D,Wang D, et al. High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide. J. Mater. Chem. A. 2015; 3(3):1317-24,
  • Baek DH, Kim J. MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens Actuators B Chem. 2017;250:686–91.
  • Chung MG, Kim DH, Seo DK, Kim T, Im HU, Lee HM, et al. Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens Actuators B Chem. 2012;169:387–92.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Betül Ceviz Şakar 0000-0003-3298-2793

Erken Görünüm Tarihi 28 Aralık 2023
Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Ceviz Şakar, B. (2023). High response hydrogen gas sensor based on palladium coated multi-walled carbon nanotube. Türk Doğa Ve Fen Dergisi, 12(4), 86-92. https://doi.org/10.46810/tdfd.1326766
AMA Ceviz Şakar B. High response hydrogen gas sensor based on palladium coated multi-walled carbon nanotube. TDFD. Aralık 2023;12(4):86-92. doi:10.46810/tdfd.1326766
Chicago Ceviz Şakar, Betül. “High Response Hydrogen Gas Sensor Based on Palladium Coated Multi-Walled Carbon Nanotube”. Türk Doğa Ve Fen Dergisi 12, sy. 4 (Aralık 2023): 86-92. https://doi.org/10.46810/tdfd.1326766.
EndNote Ceviz Şakar B (01 Aralık 2023) High response hydrogen gas sensor based on palladium coated multi-walled carbon nanotube. Türk Doğa ve Fen Dergisi 12 4 86–92.
IEEE B. Ceviz Şakar, “High response hydrogen gas sensor based on palladium coated multi-walled carbon nanotube”, TDFD, c. 12, sy. 4, ss. 86–92, 2023, doi: 10.46810/tdfd.1326766.
ISNAD Ceviz Şakar, Betül. “High Response Hydrogen Gas Sensor Based on Palladium Coated Multi-Walled Carbon Nanotube”. Türk Doğa ve Fen Dergisi 12/4 (Aralık 2023), 86-92. https://doi.org/10.46810/tdfd.1326766.
JAMA Ceviz Şakar B. High response hydrogen gas sensor based on palladium coated multi-walled carbon nanotube. TDFD. 2023;12:86–92.
MLA Ceviz Şakar, Betül. “High Response Hydrogen Gas Sensor Based on Palladium Coated Multi-Walled Carbon Nanotube”. Türk Doğa Ve Fen Dergisi, c. 12, sy. 4, 2023, ss. 86-92, doi:10.46810/tdfd.1326766.
Vancouver Ceviz Şakar B. High response hydrogen gas sensor based on palladium coated multi-walled carbon nanotube. TDFD. 2023;12(4):86-92.