It is more convenient to use fractional derivatives and integrals to express and represent rapid changes than to use integer derivatives and integrals. For this reason, fractional analysis has been found worthy of study in many fields. In recent years, fractional derivatives and integrals have been discussed together with inequality theory and the studies have attracted attention. In this article, we discuss new Hermite-Hadamard type approximations for strongly convex functions with the help of Atangana-Baleanu fractional integral operators. Additionally, new upper bounds have been obtained using various auxiliary inequalities with the help of twice differentiable strongly convex functions.
Hermite-Hadamard inequality strongly convex function Atangana-Baleanu fractional integral
Birincil Dil | İngilizce |
---|---|
Konular | Matematiksel Fizik (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 28 Haziran 2024 |
Yayımlanma Tarihi | 28 Haziran 2024 |
Gönderilme Tarihi | 24 Ocak 2024 |
Kabul Tarihi | 20 Mayıs 2024 |
Yayımlandığı Sayı | Yıl 2024 |
Bu eser Creative Commons Atıf-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.