Evaluation of the Effect of Different Extraction Temperatures on the Synthesis of Silver Nanoparticles from Ocimum basilicum (Basil) Plant
Yıl 2024,
, 88 - 94, 28.06.2024
İlkay Ünal
,
Burcu Aydoğdu
Öz
The eco-friendly green synthesis of silver nanoparticles (AgNPs) using Ocimum basilicum (basil) extract at varying extraction temperatures (40°C, 60°C, 80°C, 100°C) was investigated to determine the optimal conditions for nanoparticle formation. Analysis methods such UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and TransmissionElectron Microscopy (TEM) confirmed the crystalline, spherical nature of AgNPs and identified phytochemicals acting as capping and reducing agents. Notably, the extraction temperature was found to influence both the DPPH radical scavenging activity and the structural properties of AgNPs. According to TEM analysis results, it was observed that high extraction temperatures increased the nanoparticle formation efficiency but created a wide size distribution. The crystallite sizes, calculated using the Scherrer equation, for AgNPs synthesized at different extraction temperatures, were determined to be 12.45 nm, 18.77 nm, 17.76 nm, and 16.03 nm, respectively. The hydrodynamic sizes of the AgNPs were found to range between 158.1 and 333.7 nm. The study highlights the critical role of extraction temperature in the synthesis process, suggesting 40°C as the optimal temperature for achieving efficient and environmentally friendly synthesis of AgNPs with enhanced biological activities.
Etik Beyan
Çalışmanın her aşamasında, bilimsel araştırma ve yayın etiğine uygun davranılmıştır. Araştırmacılar, çalışmanın planlanması, uygulanması ve raporlanması sırasında her türlü sahtecilik, çıkar çatışması, veri manipülasyonu gibi etik olmayan davranışlardan kaçınmışlard
Teşekkür
Yazarlara katkılarından dolayı teşekkür ederiz
Kaynakça
- Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules. 2020;25(1):1–15.
- Maity D, Sahoo SR, Saha S. Synthesis and Characterization of Nanomaterials for Electrochemical Sensors. ACS Symp Ser. 2023;1437:193–222.
- Khan Y, Sadia H, Zeeshan S, Shah A, Khan MN, Shah AA, et al. Nanoparticles , and Their Applications in Various Fields of Nanotechnology : A Review. Catalysts. 2022;12(11):1386.
- Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;14(April):1–20.
- Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials. 2018;8(9):1–25.
- Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031.
- Wong KKY, Cheung SOF, Huang L, Niu J, Tao C, Ho CM, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem. 2009;4(7):1129–35.
- Ren Y yu, Yang H, Wang T, Wang C. Bio-synthesis of silver nanoparticles with antibacterial activity. Mater Chem Phys [Internet]. 2019;235(November 2016):121746.
- Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel). 2018;11(6):1–25.
- Thatyana M, Dube NP, Kemboi D, Manicum ALE, Mokgalaka-Fleischmann NS, Tembu J V. Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles Using Phyllanthus Plant Extracts and Their Antimicrobial and Anticancer Applications. Nanomaterials. 2023;13(19).
- Wirwis A, Sadowski Z. Green Synthesis of Silver Nanoparticles: Optimizing Green Tea Leaf Extraction for Enhanced Physicochemical Properties. ACS Omega. 2023;8(33):30532–49.
- Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022;27(4).
- Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants. 2021;10(9):1–39.
- Abdellatif AAH, Mahmood A, Alsharidah M, Mohammed HA, Alenize SK, Bouazzaoui A, et al. Bioactivities of the Green Synthesized Silver Nanoparticles Reduced Using Allium cepa L Aqueous Extracts Induced Apoptosis in Colorectal Cancer Cell Lines. J Nanomater. 2022;2022.
- HemLata, Meena PR, Singh AP, Tejavath KK. Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines. ACS Omega. 2020;5(10):5520–8.
- Rautela A, Rani J, Debnath (Das) M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol. 2019;10(1).
- Karan T, Gonulalan Z, Erenler R, Kolemen U, Eminagaoglu O. Green synthesis of silver nanoparticles using Sambucus ebulus leaves extract: Characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities. J Mol Struct [Internet]. 2024;1296(P1):136836. Available from: https://doi.org/10.1016/j.molstruc.2023.136836
- Asif M, Yasmin R, Asif R, Ambreen A, Mustafa M, Umbreen S. Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and their Antibacterial Potential. Dose-Response. 2022;20(1):1–11.
- Kedi PBE, Meva FE, Kotsedi L, Nguemfo EL, Zangueu CB, Ntoumba AA, et al. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int J Nanomedicine. 2018;13:8537–48.
- Deivanathan SK, Prakash JTJ. Green synthesis of silver nanoparticles using aqueous leaf extract of Guettarda Speciosa and its antimicrobial and anti-oxidative properties. Chem Data Collect [Internet]. 2022;38(January):100831. Available from: https://doi.org/10.1016/j.cdc.2022.100831
- Unal İ, Egri S, Ates M. Green Synthesis (Paeonia kesrouanensis) of Silver Nanoparticles and Toxicity Studies in Artemia salina. Bull Environ Contam Toxicol. 2022;109(6):1150–4.
- Molyneux Philip. The Use Of The Stable Free Radical Diphenylpicryl-hydrazyl (DPPH) For Estimating Anti-oxidant Activity. Songklanakarin J Sci Technol. 2004;26(May):1–10.
- Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One. 2015;10(7):1–20.
- Rodríguez-Serrano C, Guzmán-Moreno J, Ángeles-Chávez C, Rodríguez-González V, Juan Ortega-Sigala J, Ramírez-Santoyo RM, et al. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS One. 2020;15(3):1–20.
- Dhir R, Chauhan S, Subham P, Kumar S, Sharma P, Shidiki A, et al. Plant-mediated synthesis of silver nanoparticles: unlocking their pharmacological potential–a comprehensive review. Front Bioeng Biotechnol. 2023;11(January):1–24.
- Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638–50.
- Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871–934.
- Abdi V, Sourinejad I, Yousefzadi M, Ghasemi Z. Biosynthesis of Silver Nanoparticles from the Mangrove Rhizophora mucronata: Its Characterization and Antibacterial Potential. Iran J Sci Technol Trans A Sci [Internet]. 2019;43(5):2163–71. Available from: https://doi.org/10.1007/s40995-019-00739-9
- Mamdooh NW, Naeem GA. The effect of temperature on green synthesis of silver nanoparticles. AIP Conf Proc. 2022;2450(July).
- Vanaja M, Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci. 2013;3(3):217–23.
- Gnanajobitha G, Annadurai G, Kannan C. Green synthesis of silver nanoparticle using Elettaria cardamomom and assesment of its antimicrobial activity. Int J Pharma Sci Res(IJPSR) [Internet]. 2012;3(3):323–30. Available from: http://www.ijpsr.info/docs/IJPSR12-03-03-011.pdf
- Ghaseminezhad SM, Hamedi S, Shojaosadati SA. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties. Carbohydr Polym [Internet]. 2012;89(2):467–72. Available from: http://dx.doi.org/10.1016/j.carbpol.2012.03.030
- Khan MZH, Tareq FK, Hossen MA, Roki MNAM. Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract. J Eng Sci Technol. 2018;13(1):158–66.
- Kato H, Nakamura A, Takahashi K, Kinugasa S. Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering. Nanomaterials. 2012; 2(1):15-30.
- Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1–17.
- Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022;378.
- Antony A, Farid M. Effect of Temperatures on Polyphenols during Extraction. Appl Sci. 2022;12(4).
Ocimum basilicum (Fesleğen) Bitkisinin Farklı Ekstraksiyon Sıcaklıklarının Gümüş Nanopartikül Sentezine Etkisinin Değerlendirilmesi
Yıl 2024,
, 88 - 94, 28.06.2024
İlkay Ünal
,
Burcu Aydoğdu
Öz
Ocimum basilicum (fesleğen) özütü kullanılarak çeşitli ekstraksiyon sıcaklıklarında (40, 60, 80, ve 100°C) çevre dostu yeşil sentez yöntemi ile gümüş nanopartikülleri (AgNPs) sentezi araştırıldı. Nanopartikül oluşumunun optimal koşullarını belirlemek için UV-Vis spektrofotometri, Fourier Dönüşümlü Kızılötesi Spektroskopi (FTIR), X-ışını Kırınımı (XRD) ve Geçirimli Elektron Mikroskobu (TEM) gibi analiz yöntemleri kullanıldı. Bu yöntemlerle AgNPs'lerin kristalin ve küresel yapısı doğrulanmış ve kaplama ile indirgeyici ajan olarak hareket eden fitokimyasallar tespit edilmiştir. Özellikle, ekstraksiyon sıcaklığının hem DPPH radikal süpürme aktivitesini hem de AgNPs'nin yapısal özelliklerini etkilediği bulunmuştur. TEM analizi, daha yüksek ekstraksiyon sıcaklıklarının nanopartikül oluşum verimliliğinin artmasına yol açtığını ancak aynı zamanda daha geniş boyut dağılımına yol açtığını ortaya çıkardı. Farklı ekstraksiyon sıcaklıklarında sentezlenen AgNPs'lerin kristalit boyutları Scherrer denklemi kullanılarak sırasıyla 12.45 nm, 18.77 nm, 17.76 nm ve 16.03 nm olarak hesaplanmıştır. AgNPs'nin hidrodinamik boyutlarının 158.1 ile 333.7 nm arasında değişmiştir. Çalışma, ekstraksiyon sıcaklığının sentez sürecindeki kritik rolünü vurgulayarak, gelişmiş biyolojik aktivitelere sahip AgNP'lerin verimli ve çevre dostu sentezini için 40 °C’yi en uygun ekstraksiyon sıcaklığı olarak önermektedir.
Etik Beyan
Throughout all stages of the study, actions were taken in strict adherence to the ethics of scientific research and publication. The researchers have avoided any form of misconduct, such as fraud, conflicts of interest, or data manipulation, during the planning, execution, and reporting of the study.
Teşekkür
We thank the authors for their contributions
Kaynakça
- Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules. 2020;25(1):1–15.
- Maity D, Sahoo SR, Saha S. Synthesis and Characterization of Nanomaterials for Electrochemical Sensors. ACS Symp Ser. 2023;1437:193–222.
- Khan Y, Sadia H, Zeeshan S, Shah A, Khan MN, Shah AA, et al. Nanoparticles , and Their Applications in Various Fields of Nanotechnology : A Review. Catalysts. 2022;12(11):1386.
- Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;14(April):1–20.
- Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials. 2018;8(9):1–25.
- Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031.
- Wong KKY, Cheung SOF, Huang L, Niu J, Tao C, Ho CM, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem. 2009;4(7):1129–35.
- Ren Y yu, Yang H, Wang T, Wang C. Bio-synthesis of silver nanoparticles with antibacterial activity. Mater Chem Phys [Internet]. 2019;235(November 2016):121746.
- Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel). 2018;11(6):1–25.
- Thatyana M, Dube NP, Kemboi D, Manicum ALE, Mokgalaka-Fleischmann NS, Tembu J V. Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles Using Phyllanthus Plant Extracts and Their Antimicrobial and Anticancer Applications. Nanomaterials. 2023;13(19).
- Wirwis A, Sadowski Z. Green Synthesis of Silver Nanoparticles: Optimizing Green Tea Leaf Extraction for Enhanced Physicochemical Properties. ACS Omega. 2023;8(33):30532–49.
- Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022;27(4).
- Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants. 2021;10(9):1–39.
- Abdellatif AAH, Mahmood A, Alsharidah M, Mohammed HA, Alenize SK, Bouazzaoui A, et al. Bioactivities of the Green Synthesized Silver Nanoparticles Reduced Using Allium cepa L Aqueous Extracts Induced Apoptosis in Colorectal Cancer Cell Lines. J Nanomater. 2022;2022.
- HemLata, Meena PR, Singh AP, Tejavath KK. Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines. ACS Omega. 2020;5(10):5520–8.
- Rautela A, Rani J, Debnath (Das) M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol. 2019;10(1).
- Karan T, Gonulalan Z, Erenler R, Kolemen U, Eminagaoglu O. Green synthesis of silver nanoparticles using Sambucus ebulus leaves extract: Characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities. J Mol Struct [Internet]. 2024;1296(P1):136836. Available from: https://doi.org/10.1016/j.molstruc.2023.136836
- Asif M, Yasmin R, Asif R, Ambreen A, Mustafa M, Umbreen S. Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and their Antibacterial Potential. Dose-Response. 2022;20(1):1–11.
- Kedi PBE, Meva FE, Kotsedi L, Nguemfo EL, Zangueu CB, Ntoumba AA, et al. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int J Nanomedicine. 2018;13:8537–48.
- Deivanathan SK, Prakash JTJ. Green synthesis of silver nanoparticles using aqueous leaf extract of Guettarda Speciosa and its antimicrobial and anti-oxidative properties. Chem Data Collect [Internet]. 2022;38(January):100831. Available from: https://doi.org/10.1016/j.cdc.2022.100831
- Unal İ, Egri S, Ates M. Green Synthesis (Paeonia kesrouanensis) of Silver Nanoparticles and Toxicity Studies in Artemia salina. Bull Environ Contam Toxicol. 2022;109(6):1150–4.
- Molyneux Philip. The Use Of The Stable Free Radical Diphenylpicryl-hydrazyl (DPPH) For Estimating Anti-oxidant Activity. Songklanakarin J Sci Technol. 2004;26(May):1–10.
- Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One. 2015;10(7):1–20.
- Rodríguez-Serrano C, Guzmán-Moreno J, Ángeles-Chávez C, Rodríguez-González V, Juan Ortega-Sigala J, Ramírez-Santoyo RM, et al. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS One. 2020;15(3):1–20.
- Dhir R, Chauhan S, Subham P, Kumar S, Sharma P, Shidiki A, et al. Plant-mediated synthesis of silver nanoparticles: unlocking their pharmacological potential–a comprehensive review. Front Bioeng Biotechnol. 2023;11(January):1–24.
- Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638–50.
- Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871–934.
- Abdi V, Sourinejad I, Yousefzadi M, Ghasemi Z. Biosynthesis of Silver Nanoparticles from the Mangrove Rhizophora mucronata: Its Characterization and Antibacterial Potential. Iran J Sci Technol Trans A Sci [Internet]. 2019;43(5):2163–71. Available from: https://doi.org/10.1007/s40995-019-00739-9
- Mamdooh NW, Naeem GA. The effect of temperature on green synthesis of silver nanoparticles. AIP Conf Proc. 2022;2450(July).
- Vanaja M, Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci. 2013;3(3):217–23.
- Gnanajobitha G, Annadurai G, Kannan C. Green synthesis of silver nanoparticle using Elettaria cardamomom and assesment of its antimicrobial activity. Int J Pharma Sci Res(IJPSR) [Internet]. 2012;3(3):323–30. Available from: http://www.ijpsr.info/docs/IJPSR12-03-03-011.pdf
- Ghaseminezhad SM, Hamedi S, Shojaosadati SA. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties. Carbohydr Polym [Internet]. 2012;89(2):467–72. Available from: http://dx.doi.org/10.1016/j.carbpol.2012.03.030
- Khan MZH, Tareq FK, Hossen MA, Roki MNAM. Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract. J Eng Sci Technol. 2018;13(1):158–66.
- Kato H, Nakamura A, Takahashi K, Kinugasa S. Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering. Nanomaterials. 2012; 2(1):15-30.
- Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1–17.
- Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022;378.
- Antony A, Farid M. Effect of Temperatures on Polyphenols during Extraction. Appl Sci. 2022;12(4).