Araştırma Makalesi
BibTex RIS Kaynak Göster

Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province

Yıl 2025, Cilt: 14 Sayı: 4, 174 - 183, 30.12.2025
https://doi.org/10.46810/tdfd.1773321

Öz

This study presents the design and performance analysis of a photovoltaic-based hybrid energy system for a rural vineyard house in the Yörecik region of Muş Province, located in the Eastern Anatolia Region of Turkey. Simulations conducted considering the geographical location of the region (38.7914° latitude, 41.2412° longitude, 1533 m altitude) determined that the average annual sunshine duration is 4.5 hours/day and the average radiation value is 7.0 kWh/m²-day. The system consists of a photovoltaic (PV) array with an installed capacity of 1600 Wp, a lithium-ion battery bank with a capacity of 48 V 800 Ah, an MPPT type charge controller, and a 1.5 kW backup generator. Simulations performed using the PVSyst programme yielded an annual usable energy of 2898.98 kWh, with a performance ratio of 77.08% and a solar fraction of 83.83%. While the entire energy requirement was met by solar power during the summer months, generator support was required at a rate of 15.14% during the winter months. Loss analyses showed that the highest losses were due to temperature effects and battery charging-discharging processes. Consequently, it was demonstrated that the hybrid system designed for the Yörecik region of Muş province, thanks to its high solar energy potential, offers a feasible and efficient solution for sustainable energy supply in rural areas.

Kaynakça

  • Köprü MA, Öztürk D, Yildirim B. Techno-economic analysis of a hybrid system for rural areas: Electricity and heat generation with hydrogen and battery storage. International Journal of Hydrogen Energy. 2025;143:882-97.
  • Sezer E, Yıldırım G, Özdemir MT. Multiscale Time Series Modeling in Energy Demand Prediction: A CWT-Aided Hybrid Model. Applied Sciences. 2025;15(19):10801.
  • [cited 20.08.2025]. Available from: https://www.iea.org/energy-system/electricity.
  • Köprü MA, Öztürk D, Yıldırım B. A dispatch strategy for the analysis of the technical, economic, and environmental performance of a hybrid renewable energy system. Sustainability. 2024;16(17):7490.
  • Köprü MA, Öztürk D, Yıldırım B. Farklı rüzgâr hızı ve güneş radyasyon oranına sahip bölgeler için mikro şebeke tasarımı ve karşılaştırmalı analizi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2024;15(3):607-13.
  • Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and sustainable energy reviews. 2022;161:112279.
  • Owusu PA, Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering. 2016;3(1):1167990.
  • Hagsten E, Falk MT. Use and intensity of electronic invoices in firms: The example of Sweden. Journal of Cleaner Production. 2020;262:121291.
  • Haseeb K, Din IU, Almogren A, Ahmed I, Guizani M. Intelligent and secure edge-enabled computing model for sustainable cities using green internet of things. Sustainable Cities and Society. 2021;68:102779.
  • Feron S. Sustainability of off-grid photovoltaic systems for rural electrification in developing countries: A review. Sustainability. 2016;8(12):1326.
  • Muoka PI, Haque ME, Gargoom A. An optimisation tool for designing, costing and economic analysis of off-grid photovoltaic power plants. International Journal of Renewable Energy Technology. 2016;7(4):336-60.
  • Klokov AV, Loktionov EY, editors. Temporal resolution of input weather data strongly affects an off-grid PV system layout and reliability. Solar; 2023: MDPI.
  • Quiles E, Roldán-Blay C, Escrivá-Escrivá G, Roldán-Porta C. Accurate sizing of residential stand-alone photovoltaic systems considering system reliability. Sustainability. 2020;12(3):1274.
  • Kapoor S, Sharma AK, Porwal D, editors. Design and simulation of 60kWp solar on-grid system for rural area in Uttar-Pradesh by “PVsyst”. Journal of Physics: Conference Series; 2021: IOP Publishing.
  • Tahar T, Rachid M, Brahim B, Miloud B, editors. Study and Sizing of Stand-Alone Photovoltaic System Using PVsyst Software. Proceedings of the 10th International Conference on Information Systems and Technologies; 2020.
  • Kumar R, Rajoria C, Sharma A, Suhag S. Design and simulation of standalone solar PV system using PVsyst Software: A case study. Materials Today: Proceedings. 2021;46:5322-8.
  • Aljuboury A, Al-Azzawi W, Shakier L, Al-Amiery A, Kadhum A. Analysis of a self-sufficient photovoltaic system for a remote, off-grid community. F1000Research. 2024;11:1540.
  • [cited 13.11.2025]. Available from: https://enerji.gov.tr/bilgi-merkezi-enerji.
  • Etci A, Bilhan A. PVSyst ile Konya i̇linde sabit ve çift Eksenli Güneş Takip Sisteminin modellenmesi. Avrupa Bilim ve Teknoloji Dergisi. 2021(32):142-7.
  • Şahin ZR. Gerçekten Sanala: 1 Mwp Güneş Santralinin Pvsyst Simülasyon Programiyla Performans Analizi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2024;11(23):203-15.
  • Kılıç MY, Kurtaran M. Sürdürülebilir Enerji Üretimi İçin Fotovoltaik Sistem Tasarımı ve PVsyst Programı İle Simülasyonu: Bursa İli Örneği. Türk Tarım Ve Doğa Bilimleri Dergisi. 2024;11(1):239-48.
  • İspir M, Aksoy MH. Assessing the feasibility of off-grid photovoltaic systems for rural electrification. International Journal of Energy Applications and Technologies. 2023;10(2):74-9.
  • Tuğcu A. PVSYST Simülasyon Aracı Kullanılarak Kütahya Dumlupınar Üniversitesi Tavşanlı Yerleşkesi Şebeke Bağlantılı Güneş Enerjisi Santralinin Tasarımı ve Ekonomik Analizi. Kirklareli University Journal of Engineering and Science. 2023;9(2):397-417.
  • Haydaroğlu C, Gümüş B. Dicle Üniversitesi güneş enerjisi santralinin PVsyst ile simülasyonu ve performans parametrelerinin değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2016;7(3):491-500.
  • [cited 28.08.2025]. Available from: https://gepa.enerji.gov.tr/pages/49.aspx.Köprü

Kırsal Alanlarda Yenilenebilir Enerji Kullanımı: Muş İli Örneğinde Hibrit Fotovoltaik Sistem Tasarım

Yıl 2025, Cilt: 14 Sayı: 4, 174 - 183, 30.12.2025
https://doi.org/10.46810/tdfd.1773321

Öz

Bu çalışmada, Türkiye’nin Doğu Anadolu Bölgesi’nde yer alan Muş ili Yörecik bölgesinde kırsal bir bağ evi için fotovoltaik tabanlı hibrit enerji sistemi tasarımı ve performans analizi gerçekleştirilmiştir. Bölgenin coğrafi konumu (38.7914° enlem, 41.2412° boylam, 1533 m rakım) dikkate alınarak yapılan simülasyonlarda, yıllık ortalama güneşlenme süresinin 4,5 saat/gün, ortalama radyasyon değerinin ise 7,0 kWh/m²-gün olduğu belirlenmiştir. Sistem, 1600 Wp kurulu güce sahip fotovoltaik diziden, 48 V 800 Ah kapasiteli lityum-iyon batarya grubundan, MPPT tip şarj kontrolöründen ve 1.5 kW gücünde yedek jeneratörden oluşmaktadır. PVSyst programı ile yapılan simülasyon sonucunda, yıllık 2898.98 kWh kullanılabilir enerji elde edilmiş, performans oranı %77.08 ve solar fraksiyon %83.83 olarak hesaplanmıştır. Yaz aylarında enerji ihtiyacının tamamı güneşten karşılanırken, kış aylarında %15.14 oranında jeneratör desteğine ihtiyaç duyulmuştur. Kayıp analizleri, en yüksek kayıpların sıcaklık etkisi ve batarya şarj-deşarj süreçlerinden kaynaklandığını göstermiştir. Sonuç olarak, Muş ili Yörecik bölgesinin yüksek güneş enerjisi potansiyeli sayesinde tasarlanan hibrit sistemin kırsal alanlarda sürdürülebilir enerji temini için uygulanabilir ve verimli bir çözüm sunduğu ortaya konmuştur.

Kaynakça

  • Köprü MA, Öztürk D, Yildirim B. Techno-economic analysis of a hybrid system for rural areas: Electricity and heat generation with hydrogen and battery storage. International Journal of Hydrogen Energy. 2025;143:882-97.
  • Sezer E, Yıldırım G, Özdemir MT. Multiscale Time Series Modeling in Energy Demand Prediction: A CWT-Aided Hybrid Model. Applied Sciences. 2025;15(19):10801.
  • [cited 20.08.2025]. Available from: https://www.iea.org/energy-system/electricity.
  • Köprü MA, Öztürk D, Yıldırım B. A dispatch strategy for the analysis of the technical, economic, and environmental performance of a hybrid renewable energy system. Sustainability. 2024;16(17):7490.
  • Köprü MA, Öztürk D, Yıldırım B. Farklı rüzgâr hızı ve güneş radyasyon oranına sahip bölgeler için mikro şebeke tasarımı ve karşılaştırmalı analizi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2024;15(3):607-13.
  • Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and sustainable energy reviews. 2022;161:112279.
  • Owusu PA, Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering. 2016;3(1):1167990.
  • Hagsten E, Falk MT. Use and intensity of electronic invoices in firms: The example of Sweden. Journal of Cleaner Production. 2020;262:121291.
  • Haseeb K, Din IU, Almogren A, Ahmed I, Guizani M. Intelligent and secure edge-enabled computing model for sustainable cities using green internet of things. Sustainable Cities and Society. 2021;68:102779.
  • Feron S. Sustainability of off-grid photovoltaic systems for rural electrification in developing countries: A review. Sustainability. 2016;8(12):1326.
  • Muoka PI, Haque ME, Gargoom A. An optimisation tool for designing, costing and economic analysis of off-grid photovoltaic power plants. International Journal of Renewable Energy Technology. 2016;7(4):336-60.
  • Klokov AV, Loktionov EY, editors. Temporal resolution of input weather data strongly affects an off-grid PV system layout and reliability. Solar; 2023: MDPI.
  • Quiles E, Roldán-Blay C, Escrivá-Escrivá G, Roldán-Porta C. Accurate sizing of residential stand-alone photovoltaic systems considering system reliability. Sustainability. 2020;12(3):1274.
  • Kapoor S, Sharma AK, Porwal D, editors. Design and simulation of 60kWp solar on-grid system for rural area in Uttar-Pradesh by “PVsyst”. Journal of Physics: Conference Series; 2021: IOP Publishing.
  • Tahar T, Rachid M, Brahim B, Miloud B, editors. Study and Sizing of Stand-Alone Photovoltaic System Using PVsyst Software. Proceedings of the 10th International Conference on Information Systems and Technologies; 2020.
  • Kumar R, Rajoria C, Sharma A, Suhag S. Design and simulation of standalone solar PV system using PVsyst Software: A case study. Materials Today: Proceedings. 2021;46:5322-8.
  • Aljuboury A, Al-Azzawi W, Shakier L, Al-Amiery A, Kadhum A. Analysis of a self-sufficient photovoltaic system for a remote, off-grid community. F1000Research. 2024;11:1540.
  • [cited 13.11.2025]. Available from: https://enerji.gov.tr/bilgi-merkezi-enerji.
  • Etci A, Bilhan A. PVSyst ile Konya i̇linde sabit ve çift Eksenli Güneş Takip Sisteminin modellenmesi. Avrupa Bilim ve Teknoloji Dergisi. 2021(32):142-7.
  • Şahin ZR. Gerçekten Sanala: 1 Mwp Güneş Santralinin Pvsyst Simülasyon Programiyla Performans Analizi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2024;11(23):203-15.
  • Kılıç MY, Kurtaran M. Sürdürülebilir Enerji Üretimi İçin Fotovoltaik Sistem Tasarımı ve PVsyst Programı İle Simülasyonu: Bursa İli Örneği. Türk Tarım Ve Doğa Bilimleri Dergisi. 2024;11(1):239-48.
  • İspir M, Aksoy MH. Assessing the feasibility of off-grid photovoltaic systems for rural electrification. International Journal of Energy Applications and Technologies. 2023;10(2):74-9.
  • Tuğcu A. PVSYST Simülasyon Aracı Kullanılarak Kütahya Dumlupınar Üniversitesi Tavşanlı Yerleşkesi Şebeke Bağlantılı Güneş Enerjisi Santralinin Tasarımı ve Ekonomik Analizi. Kirklareli University Journal of Engineering and Science. 2023;9(2):397-417.
  • Haydaroğlu C, Gümüş B. Dicle Üniversitesi güneş enerjisi santralinin PVsyst ile simülasyonu ve performans parametrelerinin değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2016;7(3):491-500.
  • [cited 28.08.2025]. Available from: https://gepa.enerji.gov.tr/pages/49.aspx.Köprü
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Depolama
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Ali Köprü 0000-0002-3761-399X

Gönderilme Tarihi 28 Ağustos 2025
Kabul Tarihi 20 Kasım 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 4

Kaynak Göster

APA Köprü, M. A. (2025). Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province. Türk Doğa ve Fen Dergisi, 14(4), 174-183. https://doi.org/10.46810/tdfd.1773321
AMA Köprü MA. Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province. TDFD. Aralık 2025;14(4):174-183. doi:10.46810/tdfd.1773321
Chicago Köprü, Mehmet Ali. “Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province”. Türk Doğa ve Fen Dergisi 14, sy. 4 (Aralık 2025): 174-83. https://doi.org/10.46810/tdfd.1773321.
EndNote Köprü MA (01 Aralık 2025) Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province. Türk Doğa ve Fen Dergisi 14 4 174–183.
IEEE M. A. Köprü, “Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province”, TDFD, c. 14, sy. 4, ss. 174–183, 2025, doi: 10.46810/tdfd.1773321.
ISNAD Köprü, Mehmet Ali. “Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province”. Türk Doğa ve Fen Dergisi 14/4 (Aralık2025), 174-183. https://doi.org/10.46810/tdfd.1773321.
JAMA Köprü MA. Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province. TDFD. 2025;14:174–183.
MLA Köprü, Mehmet Ali. “Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province”. Türk Doğa ve Fen Dergisi, c. 14, sy. 4, 2025, ss. 174-83, doi:10.46810/tdfd.1773321.
Vancouver Köprü MA. Renewable Energy Use in Rural Areas: Design of a Hybrid Photovoltaic System in the Case of Muş Province. TDFD. 2025;14(4):174-83.