Araştırma Makalesi
BibTex RIS Kaynak Göster

FSS Wall Design for High Isolation MIMO Antenna Array

Yıl 2020, , 148 - 151, 23.10.2020
https://doi.org/10.46810/tdfd.745414

Öz

In MIMO antennas, mutual coupling that adversely effects antenna performance is due to the surface currents. To date, many techniques have been proposed to suppress these surface currents such as Electromagnetic Band Gap (EBG) structures, metamaterial unit cell, band-stop filters and Frequency Selective Surfaces (FSS). FSSs, when properly designed, can act as a band-stop filter in a given frequency range and thus prevent the propagation of these surface waves in the microstrip patch arrays. In this study, a new FSS unit cell is designed to reduce the mutual coupling effect caused by surface currents between two identical 2x1 patch antenna arrays with a 3.49 GHz operating frequency. These designed FSS unit cells are placed between the patches with a 1x5 periodic sequence. According to the simulation results, mutual coupling effect decreased by 26.6 dB without any shift in the transmission band with only 0.48 dB change in S11. Finally, ECC curves are plotted separately for the antenna array with and without the FSS wall. It is observed that the ECC of the antenna array is dropped from 0.16 to 0.07 by applying the proposed isolation wall.

Kaynakça

  • [1] Iqbal A, Saraereh OA, Ahmad AW, Bashir S. Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access. 2017; 6: 2755-2759.
  • [2] Yang XM, Liu XG, Zhou XY, Cui TJ. Reduction of mutual coupling between closely packed patch antennas using wave guided metamaterials. IEEE Antennas and wireless propagation letters. 2012; 11: 389-391.
  • [3] Jiang T, Jiao T, Li Y. A Low Mutual Coupling MIMO Antenna Using Periodic Multi-Layered Electromagnetic Band Gap Structures. Applied Computational Electromagnetics Society Journal. 2018; 33(3): 305-311
  • [4] Dabas T, Gangwar D, Kanaujia BK, Gautam AK. Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands. AEU-International Journal of Electronics and Communications. 2018; 93: 32-38.
  • [5] Zhang B, Jornet JM, Akyıldız IF, Wu ZP. Mutual Coupling Reduction for Ultra-Dense Multi-Band Plasmonic Nano-Antenna Arrays Using Graphene-Based Frequency Selective Surface. IEEE Access. 2019; 7: 33214-33225.
  • [6] Li J, Xiao Z, Yang F, Cai Q, Li D. Triple-layer Complementary FSS for the Mutual Coupling Reduction of Relay Antenna Arrays. International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018. Boston: IEEE; 2018. p. 1567-1568.
  • [7] Sheng X, Fan J, Liu N, Zhang C. A dual-band fractal FSS with SZ curve elements. IEICE Electronics Express. 2017; 14: 20170518.
  • [8] Khajevandi S, Oraizi H, Amini A, Poordaraee M. Design of miniaturised-element FSS based on 2.5-dimensional closed-loop Hilbert fractal. IET Microwaves, Antennas & Propagation. 2019; 13(6): 742-747.
  • [9] Fallah M, Nazeri AH, Azadkhah MR. A Novel Fractal Multi-band Frequency Selective Surface. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2019; 18(2): 276-285.
  • [10] Tütüncü B, Torpi, H. (2017). Omega-shaped metamaterial lens design for microstrip patch antenna performance optimization at 12 GHz. 10th International Conference on Electrical and Electronics Engineering, ELECO 2017. Bursa: In IEEE; 2017. p. 987-990.
  • [11] Kumar N, Kiran Kommuri U. MIMO antenna mutual coupling reduction for WLAN using spiro meander line UC-EBG. Progress in Electromagnetics Research. 2018; 80: 65-77.
  • [12] Tütüncü B. Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici. Journal of the Institute of Science and Technology. 2019; 9(1): 295-301.
  • [13] Chen X, Zhang S, Li Q. A review of mutual coupling in MIMO systems. IEEE Access. 2018; 6: 24706-24719.
  • [14] Thaysen J, Jakobsen KB. Envelope correlation in (N, N) MIMO antenna array from scattering parameters. Microwave and optical technology letters. 2006; 48(5):832-834.
  • [15] Blanch S, Romeu J, Corbella, I. Exact representation of antenna system diversity performance from input parameter description. Electronics letters. 2003; 39 (9): 705-707.

Yüksek İzolasyonlu MIMO Anten Dizisi İçin FSS Duvar Tasarımı

Yıl 2020, , 148 - 151, 23.10.2020
https://doi.org/10.46810/tdfd.745414

Öz

MIMO antenlerinde, anten performansını olumsuz etkileyen karşılıklı kuplaj, yüzey akımlarından kaynaklanır. Bugüne kadar bu yüzey akımlarını bastırmak için, Elektromanyetik Bant Boşluğu (EBG) yapıları, metamalzeme birim hücresi, bant durdurma filtreleri ve Frekans Seçici Yüzeyler (FSS) gibi birçok teknikler önerilmiştir. FSS'ler, uygun şekilde tasarlandıklarında, belirli bir frekans aralığında bir bant durdurma filtresi olarak işlev görebilir ve bu nedenle bu yüzey dalgalarının mikro şerit yama dizilerinde yayılmasını önlerler. Bu çalışmada, 3.49 GHz çalışma frekansına sahip iki özdeş 2x1 yama anten dizisi arasındaki yüzey akımlarının neden olduğu karşılıklı eşleştirme etkisini azaltmak için yeni bir FSS birim hücresi tasarlanmıştır. Bu tasarlanan FSS birim hücreleri, 1x5 periyodik diziyle yamalar arasına yerleştirilir. Simülasyon sonuçlarına göre, karşılıklı bağlantı etkisi, iletim bandında herhangi bir kayma olmadan 26,6 dB azaldı ve S11'de ise sadece 0,48 dB'lik bir değişim gözlendi. Son olarak, ECC eğrileri FSS duvarı olan ve olmayan anten dizisi için ayrı ayrı çizildi. Anten dizisinin ECC' sinin, önerilen yalıtkan duvarı uygulanarak 0.16'dan 0.07'ye düşürüldüğü gözlendi.

Kaynakça

  • [1] Iqbal A, Saraereh OA, Ahmad AW, Bashir S. Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access. 2017; 6: 2755-2759.
  • [2] Yang XM, Liu XG, Zhou XY, Cui TJ. Reduction of mutual coupling between closely packed patch antennas using wave guided metamaterials. IEEE Antennas and wireless propagation letters. 2012; 11: 389-391.
  • [3] Jiang T, Jiao T, Li Y. A Low Mutual Coupling MIMO Antenna Using Periodic Multi-Layered Electromagnetic Band Gap Structures. Applied Computational Electromagnetics Society Journal. 2018; 33(3): 305-311
  • [4] Dabas T, Gangwar D, Kanaujia BK, Gautam AK. Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands. AEU-International Journal of Electronics and Communications. 2018; 93: 32-38.
  • [5] Zhang B, Jornet JM, Akyıldız IF, Wu ZP. Mutual Coupling Reduction for Ultra-Dense Multi-Band Plasmonic Nano-Antenna Arrays Using Graphene-Based Frequency Selective Surface. IEEE Access. 2019; 7: 33214-33225.
  • [6] Li J, Xiao Z, Yang F, Cai Q, Li D. Triple-layer Complementary FSS for the Mutual Coupling Reduction of Relay Antenna Arrays. International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018. Boston: IEEE; 2018. p. 1567-1568.
  • [7] Sheng X, Fan J, Liu N, Zhang C. A dual-band fractal FSS with SZ curve elements. IEICE Electronics Express. 2017; 14: 20170518.
  • [8] Khajevandi S, Oraizi H, Amini A, Poordaraee M. Design of miniaturised-element FSS based on 2.5-dimensional closed-loop Hilbert fractal. IET Microwaves, Antennas & Propagation. 2019; 13(6): 742-747.
  • [9] Fallah M, Nazeri AH, Azadkhah MR. A Novel Fractal Multi-band Frequency Selective Surface. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2019; 18(2): 276-285.
  • [10] Tütüncü B, Torpi, H. (2017). Omega-shaped metamaterial lens design for microstrip patch antenna performance optimization at 12 GHz. 10th International Conference on Electrical and Electronics Engineering, ELECO 2017. Bursa: In IEEE; 2017. p. 987-990.
  • [11] Kumar N, Kiran Kommuri U. MIMO antenna mutual coupling reduction for WLAN using spiro meander line UC-EBG. Progress in Electromagnetics Research. 2018; 80: 65-77.
  • [12] Tütüncü B. Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici. Journal of the Institute of Science and Technology. 2019; 9(1): 295-301.
  • [13] Chen X, Zhang S, Li Q. A review of mutual coupling in MIMO systems. IEEE Access. 2018; 6: 24706-24719.
  • [14] Thaysen J, Jakobsen KB. Envelope correlation in (N, N) MIMO antenna array from scattering parameters. Microwave and optical technology letters. 2006; 48(5):832-834.
  • [15] Blanch S, Romeu J, Corbella, I. Exact representation of antenna system diversity performance from input parameter description. Electronics letters. 2003; 39 (9): 705-707.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bilal Tütüncü 0000-0002-7439-268X

Yayımlanma Tarihi 23 Ekim 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Tütüncü, B. (2020). FSS Wall Design for High Isolation MIMO Antenna Array. Türk Doğa Ve Fen Dergisi, 9(Özel Sayı), 148-151. https://doi.org/10.46810/tdfd.745414
AMA Tütüncü B. FSS Wall Design for High Isolation MIMO Antenna Array. TDFD. Ekim 2020;9(Özel Sayı):148-151. doi:10.46810/tdfd.745414
Chicago Tütüncü, Bilal. “FSS Wall Design for High Isolation MIMO Antenna Array”. Türk Doğa Ve Fen Dergisi 9, sy. Özel Sayı (Ekim 2020): 148-51. https://doi.org/10.46810/tdfd.745414.
EndNote Tütüncü B (01 Ekim 2020) FSS Wall Design for High Isolation MIMO Antenna Array. Türk Doğa ve Fen Dergisi 9 Özel Sayı 148–151.
IEEE B. Tütüncü, “FSS Wall Design for High Isolation MIMO Antenna Array”, TDFD, c. 9, sy. Özel Sayı, ss. 148–151, 2020, doi: 10.46810/tdfd.745414.
ISNAD Tütüncü, Bilal. “FSS Wall Design for High Isolation MIMO Antenna Array”. Türk Doğa ve Fen Dergisi 9/Özel Sayı (Ekim 2020), 148-151. https://doi.org/10.46810/tdfd.745414.
JAMA Tütüncü B. FSS Wall Design for High Isolation MIMO Antenna Array. TDFD. 2020;9:148–151.
MLA Tütüncü, Bilal. “FSS Wall Design for High Isolation MIMO Antenna Array”. Türk Doğa Ve Fen Dergisi, c. 9, sy. Özel Sayı, 2020, ss. 148-51, doi:10.46810/tdfd.745414.
Vancouver Tütüncü B. FSS Wall Design for High Isolation MIMO Antenna Array. TDFD. 2020;9(Özel Sayı):148-51.