Araştırma Makalesi
BibTex RIS Kaynak Göster

Preparation of New Anthracene Based Copolymer System and Graphene Composites, Investigation of Thermal and Electrical Properties

Yıl 2020, , 9 - 17, 30.12.2020
https://doi.org/10.46810/tdfd.818808

Öz

This study aimed to investigate the thermal and electrical behavior of the new copolymer system with chalcone side chain containing anthracene. The structures of monomer and copolymers were characterized using FT-IR, 1H-NMR and 13C-NMR techniques. The thermal behaviors of copolymers have been analyzed by using DSC and TGA. The glass transition temperature was increased from 123 °C to 142 °C with increasing the anthracene content in the copolymer. Semiconducting composites of copolymers have been prepared by adding 4% graphene particles to the copolymer matrix. The dielectric measurements of the copolymers were investigated using the impedance analyzer technique in the frequency range of 100 Hz-20 kHz. The dielectric constant is greatly increase from 5.21 to 273.28 for P(MMA-ko-AAPAc 0.43) by the addition of 4% nanographene. The AC and DC conductivity of copolymer/graphene composites were measured. Furthermore, the activation energy values of the copolymer/4% graphene composites were obtained by measuring the DC conductivity as a function of temperature. The activation energy values of the copolymer/4% graphene composites were 0.320, 0.077 and 0.040 eV for P(MMA-ko-AAPAc 0.16), P(MMA-ko-AAPAc 0.31) and P(MMA-ko-AAPAc 0.43), respectively.

Kaynakça

  • [1] Jones RN. The ultraviolet absorption spectra of anthracene derivatives. Chem Rev, 41:1947; p:353-71.
  • [2] Dadvand A, Sun WH, Moiseev AG, Belanger-Gariepy F, Rosei F, Meng H, et al.1,5-, 2,6-and 9,10-distyrylanthracenes as luminescent organicsemiconductors. J Mater Chem C, 1: 2013; p:2817-25.
  • [3] Zhao Y, Yan L, Murtaza I, Liang X, Meng H, Huang W. A thermally stableanthracene derivative for application in organic thin film transistors. Org Electron, 43: 2017; p:105-11.
  • [4] Hisamatsu S, Masu H, Takahashi M, Kishikawa K, Kohmoto S. Pairwisepacking of anthracene fluorophore: hydrogen-bonding-assisted dimeremission in solid state. Cryst Growth Des, 15: 2015; p:2291-302.
  • [5] Song JY, Park SN, Lee SJ, Kim YK, Yoon SS. Novel fluorescent blue-emittingmaterials based on anthracene-fluorene hybrids with triphenylsilane groupfor organic light-emitting diodes. Dyes Pigm, 114: 2015; p:40-6.
  • [6] Chen M, Zhao Y, Yan L, Yang S, Zhu Y, Murtaza I, et al. A unique blend of 2-fluorenyl-2-anthracene and 2-anthryl-2-anthracence showing whiteemission and high charge mobility. Angew Chem Int Ed, 56: 2017; p:722-7
  • [7] Krakovyak MG, Anufrıeva EV, Lushchık VB, Shelekhov NS, Skorokhodov SS. 9-Anthryldiazomethane in the Synthesis of Anthracene- Containing Polymers. J Macromol Sci: Part A-Chem, 12: 1978; p:789-814.
  • [8] Skorokho SS, Krakovyak MG, Anufrıeva EV, Shelekhov NS. Investigation of chemical behavior of anthracene derivatives as monomers and reagents in synthesis of macromolecules containing anthracene groups. J Polym Sci, 42: 1973; p:1229-38.
  • [9] Krakovyak MG, Anufrieva YV, Skorokho SS. Synthesis and copolymerization of anthracene-containing acrylic monomers. Polym Sci USSR, 14(5): 1972; p:1259-64.
  • [10] Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic & Medicinal Chemistry, 14: 2006; 3491-95.
  • [11] P. Dallas, V. Georgakilas, D. Niarchos, P. Komninou, T. Kehagias, D. Petridis. Synthesis, Characterization and Thermal Properties of Polymer/Magnetite Nanocomposites. Nanotechnology, 17: 2006; p: 2046-53.
  • [12] Biryan F, Demirelli K. Copolymerization of Benzyl Methacrylate and a Methacrylate Bearing, Benzophenoxy and Hydroxyl Side Groups: Monomer Reactivity Ratios, Thermal Studies and Dielectric Measurements. Fibers and Polymers, 18: 2017; p:1629-37.
  • [13] Mano JF, Koniarova D, Reis RL. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mat Sci: Mat in Med, 14: 2003; p:127-35.
  • [14] Gama NV, Silva R, Mohseni F, Davarpanah A, Amaral VS, Ferreiraad A, Barros-Timmons A. Enhancement of physical and reaction to fire properties of crude glycerol polyurethane foams filled with expanded graphite. Polym Test, 69: 2018; p:199-207.
  • [15] Biryan F, Demirelli K. Characterization, thermal behavior, and electrical measurements of poly[4-(2-bromoisobutyroyl methyl)styrene]. Adv Polym Teghnol, 37: 2017; p:1994-2012.
  • [16] Zheng W, Wong SC. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Comp Sci Technol, 63: 2003; p: 225-35.
  • [17] Xiang H, Zheng Z, Guang-Xin C, Qifang L. Composite material with high dielectric constant and low dielectric loss obtained through grafting of cyano groups in imidazolium ionic liquids. Chem Phys Lett, 711: 2018; p:173-77.
  • [18] Ningaraju S, Vinayakaprasanna NH, Gnana Prakash AP, Ravikumar HB. Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites. Chem Phys Lett, 698: 2018; p:24-35.
  • [19] Tahaa TA, Azabb AA. Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J Mol Str, 1178: 2019; p:39-44.
  • [20]Uyor UO, Popoola API, Popoola OM, Aigbodion VS. Enhanced dielectric performance and energy storage density of polymer/ graphene nanocomposites prepared by dual fabrication. J Thermoplast Comp Mat, 2018; p:1-16.
  • [21] Koran K. Structural, chemical and electrical characterization oforganocyclotriphosphazene derivatives and their graphene-basedcomposites. J Mol Str, 1179: 2019; p:224-32.
  • [22] Sudha LK, Sukumar R, Uma Rao K. Evaluation of activation energy (Ea) profiles of nanostructured alumina polycarbonate composite insulation materials. Int J Mater Mech Manuf, 2(1): 2014; p:1973-8198.
  • [23]Rhoderick, E.H., Williams, R.H., 1988. Metal–Semiconductor Contacts, 2nd ed. Clarendon Press, Oxford, s45-50.
  • [24]Pham H, Tran HN, Holland AS, Partrıdge JG. Temperature-Dependent Electrical Characteristics and Extraction of Richardson Constant from Graphitic-C/n-Type 6H-SiC Schottky Diodes. J Elec Mat, 48: 2019; p:2061-2066.
  • [25]Jonscher AK. Electronic properties of amorphous dielectric films, Thin Solid Films, 1(3): 1967; p:213-234.

Yeni Antrasen Bazlı Kopolimer Sistemi ve Grafen Kompozitlerinin Hazırlanması, Termal ve Elektriksel Özelliklerinin İncelenmesi

Yıl 2020, , 9 - 17, 30.12.2020
https://doi.org/10.46810/tdfd.818808

Öz

Bu çalışma, antrasen içeren kalkon yan zincirli yeni kopolimer sisteminin termal ve elektriksel özelliklerini incelemeyi amaçlamıştır. Monomer ve kopolimerlerin yapıları FT-IR, 1H-NMR ve 13C-NMR teknikleri kullanılarak karakterize edildi. Kopolimerlerin termal davranışları DSC ve TGA kullanılarak analiz edildi. Kopolimerdeki antrasen birimlerinin artmasıyla camsı geçiş sıcaklığının 123 °C'den 142 °C'ye yükseldiği gözlemlendi. Kopolimer matriksine % 4 grafen partikülleri ilave edilerek yarı-iletken kompozitler hazırlandı. Kopolimerlerin ve grafen kompozitlerinin dielektrik ölçümleri 100 Hz-20 kHz frekans aralığında empedans analizör tekniği kullanılarak incelendi. P(MMA-ko-AAPAc 0.43)’ın dielektrik sabiti grafenin ilavesiyle 5.21'den 273.28'e yükseldi. Kompozitlerin aktivasyon enerjisi değerleri, sıcaklığın bir fonksiyonu olarak DC iletkenliği ölçülerek elde edildi. Aaktivasyon enerjisi değerleri P (MMA-ko-AAPAc 0.16), P (MMA-ko-AAPAc 0.31) ve P (MMA-ko-AAPAc 0.43) için sırasıyla 0.320, 0.077 ve 0.040 eV olarak belirlendi.

Kaynakça

  • [1] Jones RN. The ultraviolet absorption spectra of anthracene derivatives. Chem Rev, 41:1947; p:353-71.
  • [2] Dadvand A, Sun WH, Moiseev AG, Belanger-Gariepy F, Rosei F, Meng H, et al.1,5-, 2,6-and 9,10-distyrylanthracenes as luminescent organicsemiconductors. J Mater Chem C, 1: 2013; p:2817-25.
  • [3] Zhao Y, Yan L, Murtaza I, Liang X, Meng H, Huang W. A thermally stableanthracene derivative for application in organic thin film transistors. Org Electron, 43: 2017; p:105-11.
  • [4] Hisamatsu S, Masu H, Takahashi M, Kishikawa K, Kohmoto S. Pairwisepacking of anthracene fluorophore: hydrogen-bonding-assisted dimeremission in solid state. Cryst Growth Des, 15: 2015; p:2291-302.
  • [5] Song JY, Park SN, Lee SJ, Kim YK, Yoon SS. Novel fluorescent blue-emittingmaterials based on anthracene-fluorene hybrids with triphenylsilane groupfor organic light-emitting diodes. Dyes Pigm, 114: 2015; p:40-6.
  • [6] Chen M, Zhao Y, Yan L, Yang S, Zhu Y, Murtaza I, et al. A unique blend of 2-fluorenyl-2-anthracene and 2-anthryl-2-anthracence showing whiteemission and high charge mobility. Angew Chem Int Ed, 56: 2017; p:722-7
  • [7] Krakovyak MG, Anufrıeva EV, Lushchık VB, Shelekhov NS, Skorokhodov SS. 9-Anthryldiazomethane in the Synthesis of Anthracene- Containing Polymers. J Macromol Sci: Part A-Chem, 12: 1978; p:789-814.
  • [8] Skorokho SS, Krakovyak MG, Anufrıeva EV, Shelekhov NS. Investigation of chemical behavior of anthracene derivatives as monomers and reagents in synthesis of macromolecules containing anthracene groups. J Polym Sci, 42: 1973; p:1229-38.
  • [9] Krakovyak MG, Anufrieva YV, Skorokho SS. Synthesis and copolymerization of anthracene-containing acrylic monomers. Polym Sci USSR, 14(5): 1972; p:1259-64.
  • [10] Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic & Medicinal Chemistry, 14: 2006; 3491-95.
  • [11] P. Dallas, V. Georgakilas, D. Niarchos, P. Komninou, T. Kehagias, D. Petridis. Synthesis, Characterization and Thermal Properties of Polymer/Magnetite Nanocomposites. Nanotechnology, 17: 2006; p: 2046-53.
  • [12] Biryan F, Demirelli K. Copolymerization of Benzyl Methacrylate and a Methacrylate Bearing, Benzophenoxy and Hydroxyl Side Groups: Monomer Reactivity Ratios, Thermal Studies and Dielectric Measurements. Fibers and Polymers, 18: 2017; p:1629-37.
  • [13] Mano JF, Koniarova D, Reis RL. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mat Sci: Mat in Med, 14: 2003; p:127-35.
  • [14] Gama NV, Silva R, Mohseni F, Davarpanah A, Amaral VS, Ferreiraad A, Barros-Timmons A. Enhancement of physical and reaction to fire properties of crude glycerol polyurethane foams filled with expanded graphite. Polym Test, 69: 2018; p:199-207.
  • [15] Biryan F, Demirelli K. Characterization, thermal behavior, and electrical measurements of poly[4-(2-bromoisobutyroyl methyl)styrene]. Adv Polym Teghnol, 37: 2017; p:1994-2012.
  • [16] Zheng W, Wong SC. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Comp Sci Technol, 63: 2003; p: 225-35.
  • [17] Xiang H, Zheng Z, Guang-Xin C, Qifang L. Composite material with high dielectric constant and low dielectric loss obtained through grafting of cyano groups in imidazolium ionic liquids. Chem Phys Lett, 711: 2018; p:173-77.
  • [18] Ningaraju S, Vinayakaprasanna NH, Gnana Prakash AP, Ravikumar HB. Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites. Chem Phys Lett, 698: 2018; p:24-35.
  • [19] Tahaa TA, Azabb AA. Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J Mol Str, 1178: 2019; p:39-44.
  • [20]Uyor UO, Popoola API, Popoola OM, Aigbodion VS. Enhanced dielectric performance and energy storage density of polymer/ graphene nanocomposites prepared by dual fabrication. J Thermoplast Comp Mat, 2018; p:1-16.
  • [21] Koran K. Structural, chemical and electrical characterization oforganocyclotriphosphazene derivatives and their graphene-basedcomposites. J Mol Str, 1179: 2019; p:224-32.
  • [22] Sudha LK, Sukumar R, Uma Rao K. Evaluation of activation energy (Ea) profiles of nanostructured alumina polycarbonate composite insulation materials. Int J Mater Mech Manuf, 2(1): 2014; p:1973-8198.
  • [23]Rhoderick, E.H., Williams, R.H., 1988. Metal–Semiconductor Contacts, 2nd ed. Clarendon Press, Oxford, s45-50.
  • [24]Pham H, Tran HN, Holland AS, Partrıdge JG. Temperature-Dependent Electrical Characteristics and Extraction of Richardson Constant from Graphitic-C/n-Type 6H-SiC Schottky Diodes. J Elec Mat, 48: 2019; p:2061-2066.
  • [25]Jonscher AK. Electronic properties of amorphous dielectric films, Thin Solid Films, 1(3): 1967; p:213-234.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Fatih Biryan 0000-0001-9198-3329

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Biryan, F. (2020). Yeni Antrasen Bazlı Kopolimer Sistemi ve Grafen Kompozitlerinin Hazırlanması, Termal ve Elektriksel Özelliklerinin İncelenmesi. Türk Doğa Ve Fen Dergisi, 9(2), 9-17. https://doi.org/10.46810/tdfd.818808
AMA Biryan F. Yeni Antrasen Bazlı Kopolimer Sistemi ve Grafen Kompozitlerinin Hazırlanması, Termal ve Elektriksel Özelliklerinin İncelenmesi. TDFD. Aralık 2020;9(2):9-17. doi:10.46810/tdfd.818808
Chicago Biryan, Fatih. “Yeni Antrasen Bazlı Kopolimer Sistemi Ve Grafen Kompozitlerinin Hazırlanması, Termal Ve Elektriksel Özelliklerinin İncelenmesi”. Türk Doğa Ve Fen Dergisi 9, sy. 2 (Aralık 2020): 9-17. https://doi.org/10.46810/tdfd.818808.
EndNote Biryan F (01 Aralık 2020) Yeni Antrasen Bazlı Kopolimer Sistemi ve Grafen Kompozitlerinin Hazırlanması, Termal ve Elektriksel Özelliklerinin İncelenmesi. Türk Doğa ve Fen Dergisi 9 2 9–17.
IEEE F. Biryan, “Yeni Antrasen Bazlı Kopolimer Sistemi ve Grafen Kompozitlerinin Hazırlanması, Termal ve Elektriksel Özelliklerinin İncelenmesi”, TDFD, c. 9, sy. 2, ss. 9–17, 2020, doi: 10.46810/tdfd.818808.
ISNAD Biryan, Fatih. “Yeni Antrasen Bazlı Kopolimer Sistemi Ve Grafen Kompozitlerinin Hazırlanması, Termal Ve Elektriksel Özelliklerinin İncelenmesi”. Türk Doğa ve Fen Dergisi 9/2 (Aralık 2020), 9-17. https://doi.org/10.46810/tdfd.818808.
JAMA Biryan F. Yeni Antrasen Bazlı Kopolimer Sistemi ve Grafen Kompozitlerinin Hazırlanması, Termal ve Elektriksel Özelliklerinin İncelenmesi. TDFD. 2020;9:9–17.
MLA Biryan, Fatih. “Yeni Antrasen Bazlı Kopolimer Sistemi Ve Grafen Kompozitlerinin Hazırlanması, Termal Ve Elektriksel Özelliklerinin İncelenmesi”. Türk Doğa Ve Fen Dergisi, c. 9, sy. 2, 2020, ss. 9-17, doi:10.46810/tdfd.818808.
Vancouver Biryan F. Yeni Antrasen Bazlı Kopolimer Sistemi ve Grafen Kompozitlerinin Hazırlanması, Termal ve Elektriksel Özelliklerinin İncelenmesi. TDFD. 2020;9(2):9-17.