Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Investigation of The Effects of Turning Parameters on Cutting Temperature and Crater Wear

Yıl 2021, Cilt: 10 Sayı: 1, 109 - 118, 25.06.2021
https://doi.org/10.46810/tdfd.830053

Öz

While cutting tools deformed during machining inevitably, it is highly important to monitor the developing wear in terms of determining the cutting performance of cutting tool. Due to non-uniform wear distribution on the cutting tool, determination of location and extent of the wear is required. Crater wear occurred on the rake face of the cutting tool with the effect of abrasive, adhesive and diffusion mechanisms, a tool wear type leads to tool failure in case of excessive progress. The study carried out to investigate the relationship between tool rake face temperature and crater wear during turning of AISI 5140, being as the first in the field. In the context of the study, cutting speed, feed rate, depth of cut and cutting edge angle parameters were used, experiments were carried out under dry cutting conditions. Crater wear was measured from cutting tool when the turning operation stopped however tool temperature was monitored as online with the assistance of temperature sensor. Statistical and graphical results demonstrated that cutting speed is the most effective parameter on crater wear (71.3%) and tool temperature (78.5%). Since the cutting speed have impact on the friction conditions along the rake face of cutting tool and being influential factor on abrasive and diffusion wear mechanisms, it is concurred that a strong relationship between tool temperature and crater wear exist.

Kaynakça

  • [1] A. Aslan, Production of metal matrix composites by recycling of waste metal chips and their mechanical properties, Selçuk University, 2014.
  • [2] A. Aslan, A. Güneş, E. Salur, Ö.S. Şahin, H.B. Karadağ, A. Akdemir, Mechanical properties and microstructure of composites produced by recycling metal chips, International Journal of Minerals, Metallurgy, and Materials, 25 (2018) 1070-1079.
  • [3] A. Aslan, O.S. Sahin, E. Salur, A. Gunes, A. Akdemir, H.B. Karadag, A new method for recycling of metal chips, Journal of Selcuk University Natural and Applied Science, 4 (2015) 1-12.
  • [4] H. Sepet, N. Tarakcioglu, R. Misra, Determination of the mechanical, thermal and physical properties of nano-CaCO3 filled high-density polyethylene nanocomposites produced in an industrial scale, Journal of composite materials, 50 (2016) 3445-3456.
  • [5] A. Aslan, E. Salur, A. Gunes, O. Sahin, H. Karadag, A. Akdemir, The mechanical properties of composite materials recycled from waste metallic chips under different pressures, International Journal of Environmental Science and Technology, (2019) 1-8.
  • [6] C. Nazik, N. Tarakcioglu, S. Ozkaya, F. Erdemir, A. Canakci, Determination of effect of B 4 C content on density and tensile strength of AA7075/B 4 C composite produced via powder technology, International Journal of Materials, Mechanics and Manufacturing, 4 (2016) 251-261.
  • [7] Ö.S. Şahin, A. Güneş, A. Aslan, E. Salur, H.B. Karadağ, A. Akdemir, Low-Velocity Impact Behavior of Porous Metal Matrix Composites Produced by Recycling of Bronze and Iron Chips, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-8.
  • [8] H. Sepet, N. Tarakcioglu, R. Misra, Effect of inorganic nanofillers on the impact behavior and fracture probability of industrial high-density polyethylene nanocomposite, Journal of Composite Materials, 52 (2018) 2431-2442.
  • [9] M. Kuntoğlu, H. Sağlam, Investigation of progressive tool wear for determining of optimized machining parameters in turning, Measurement, 140 (2019) 427-436.
  • [10] E. Salur, A. Aslan, M. Kuntoglu, A. Gunes, O.S. Sahin, Experimental study and analysis of machinability characteristics of metal matrix composites during drilling, Composites Part B: Engineering, 166 (2019) 401-413.
  • [11] A. Ghasempoor, J. Jeswiet, T. Moore, Real time implementation of on-line tool condition monitoring in turning, International Journal of Machine Tools and Manufacture, 39 (1999) 1883-1902.
  • [12] C. Scheffer, H. Kratz, P. Heyns, F. Klocke, Development of a tool wear-monitoring system for hard turning, International Journal of Machine Tools and Manufacture, 43 (2003) 973-985. [13] Y.S. Ahmed, M.S. Alam, A. Arif, S. Veldhuis, Use of acoustic emission and cutting force signals to monitor built-up edge formation in stainless steel turning, The International Journal of Advanced Manufacturing Technology, 103 (2019) 2257-2276.
  • [14] H. Singh, P. Kumar, Tool wear optimization in turning operation by Taguchi method, (2004).
  • [15] M. Gupta, G. Singh, P. Sood, Modelling and optimization of tool wear in machining of EN24 steel using taguchi approach, Journal of The Institution of Engineers (India): Series C, 96 (2015) 269-277.
  • [16] M. Mia, P.R. Dey, M.S. Hossain, M.T. Arafat, M. Asaduzzaman, M.S. Ullah, S.T. Zobaer, Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition, Measurement, 122 (2018) 380-391.
  • [17] K.A. Kumar, C. Ratnam, K.V. Rao, B. Murthy, Experimental studies of machining parameters on surface roughness, flank wear, cutting forces and work piece vibration in boring of AISI 4340 steels: modelling and optimization approach, SN Applied Sciences, 1 (2019) 26.
  • [18] M. Balaji, K.V. Rao, N.M. Rao, B. Murthy, Optimization of drilling parameters for drilling of TI-6Al-4V based on surface roughness, flank wear and drill vibration, Measurement, 114 (2018) 332-339.
  • [19] H. Ravindra, Y. Srinivasa, R. Krishnamurthy, Modelling of tool wear based on cutting forces in turning, Wear, 169 (1993) 25-32.
  • [20] Y. Huang, T.G. Dawson, Tool crater wear depth modeling in CBN hard turning, Wear, 258 (2005) 1455-1461.
  • [21] M. Kuntoğlu, A. Aslan, H. Sağlam, D.Y. Pimenov, K. Giasin, T. Mikolajczyk, Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via Tool Condition Monitoring System in turning of AISI 5140, Sensors, 20 (2020) 4377.
  • [22] M. Kuntoğlu, H. Sağlam, Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning, Measurement, (2020) 108582.
  • [23] M.M. Cutting, A practical handbook, Sandvik Coromant, (1994).

Tornalama Parametrelerinin Kesme Sıcaklığı ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması

Yıl 2021, Cilt: 10 Sayı: 1, 109 - 118, 25.06.2021
https://doi.org/10.46810/tdfd.830053

Öz

Kesici takımlar işleme esnasında kaçınılmaz olarak deforme olurken, meydana gelen aşınmayı takip etmek takımın işleme performansını tayin etmek açısından son derece önemlidir. Takım yüzeylerinde aşınmanın düzenli bir yapıda yayılmaması, aşınmanın yeri ve miktarının belirlenmesini gerektirmektedir. Krater aşınması aşındırıcı, yapışma ve difüzyon aşınması mekanizmalarının etkisi ile kesici takımın talaş yüzeyinde meydana gelen, fazla ilerlemesi durumunda takım kaybına yol açabilen bir takım aşınması tipidir. Bu çalışma, AISI 5140 malzemenin tornalanması esnasında kesici takımda meydana gelen krater aşınmasının takım talaş yüzeyi sıcaklığı ile ilişkisinin incelenmesi amacı ile yapılmış olup, bu alanda bir ilk niteliğindedir. Çalışma kapsamında kesme hızı, ilerleme, talaş derinliği ve yaklaşma açısı parametreleri kullanılmış olup deneyler kuru kesme şartlarında gerçekleştirilmiştir. Krater aşınması tornalama işlemi durdurulduğunda kesici takım üzerinden ölçülmüş, takım sıcaklığı ise sıcaklık sensörü yardımı ile anlık olarak izlenmiştir. İstatistiksel ve grafiksel sonuçlar, kesme hızının krater aşınması (71.3%) ve takım sıcaklığı (78.5%) üzerinde en etkili parametre olduğunu ortaya koymuştur. Tornalamada kesme hızının talaş yüzeyinde kesici takım ve iş parçası sürtünme koşulları üzerinde etkili olması ve bu bölgede meydana gelen aşındırıcı ve difüzyon aşınma mekanizmalarını tayin etmesi sebebiyle krater aşınması ve takım sıcaklığı arasında kuvvetli bir ilişki olduğu düşünülmektedir.

Kaynakça

  • [1] A. Aslan, Production of metal matrix composites by recycling of waste metal chips and their mechanical properties, Selçuk University, 2014.
  • [2] A. Aslan, A. Güneş, E. Salur, Ö.S. Şahin, H.B. Karadağ, A. Akdemir, Mechanical properties and microstructure of composites produced by recycling metal chips, International Journal of Minerals, Metallurgy, and Materials, 25 (2018) 1070-1079.
  • [3] A. Aslan, O.S. Sahin, E. Salur, A. Gunes, A. Akdemir, H.B. Karadag, A new method for recycling of metal chips, Journal of Selcuk University Natural and Applied Science, 4 (2015) 1-12.
  • [4] H. Sepet, N. Tarakcioglu, R. Misra, Determination of the mechanical, thermal and physical properties of nano-CaCO3 filled high-density polyethylene nanocomposites produced in an industrial scale, Journal of composite materials, 50 (2016) 3445-3456.
  • [5] A. Aslan, E. Salur, A. Gunes, O. Sahin, H. Karadag, A. Akdemir, The mechanical properties of composite materials recycled from waste metallic chips under different pressures, International Journal of Environmental Science and Technology, (2019) 1-8.
  • [6] C. Nazik, N. Tarakcioglu, S. Ozkaya, F. Erdemir, A. Canakci, Determination of effect of B 4 C content on density and tensile strength of AA7075/B 4 C composite produced via powder technology, International Journal of Materials, Mechanics and Manufacturing, 4 (2016) 251-261.
  • [7] Ö.S. Şahin, A. Güneş, A. Aslan, E. Salur, H.B. Karadağ, A. Akdemir, Low-Velocity Impact Behavior of Porous Metal Matrix Composites Produced by Recycling of Bronze and Iron Chips, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-8.
  • [8] H. Sepet, N. Tarakcioglu, R. Misra, Effect of inorganic nanofillers on the impact behavior and fracture probability of industrial high-density polyethylene nanocomposite, Journal of Composite Materials, 52 (2018) 2431-2442.
  • [9] M. Kuntoğlu, H. Sağlam, Investigation of progressive tool wear for determining of optimized machining parameters in turning, Measurement, 140 (2019) 427-436.
  • [10] E. Salur, A. Aslan, M. Kuntoglu, A. Gunes, O.S. Sahin, Experimental study and analysis of machinability characteristics of metal matrix composites during drilling, Composites Part B: Engineering, 166 (2019) 401-413.
  • [11] A. Ghasempoor, J. Jeswiet, T. Moore, Real time implementation of on-line tool condition monitoring in turning, International Journal of Machine Tools and Manufacture, 39 (1999) 1883-1902.
  • [12] C. Scheffer, H. Kratz, P. Heyns, F. Klocke, Development of a tool wear-monitoring system for hard turning, International Journal of Machine Tools and Manufacture, 43 (2003) 973-985. [13] Y.S. Ahmed, M.S. Alam, A. Arif, S. Veldhuis, Use of acoustic emission and cutting force signals to monitor built-up edge formation in stainless steel turning, The International Journal of Advanced Manufacturing Technology, 103 (2019) 2257-2276.
  • [14] H. Singh, P. Kumar, Tool wear optimization in turning operation by Taguchi method, (2004).
  • [15] M. Gupta, G. Singh, P. Sood, Modelling and optimization of tool wear in machining of EN24 steel using taguchi approach, Journal of The Institution of Engineers (India): Series C, 96 (2015) 269-277.
  • [16] M. Mia, P.R. Dey, M.S. Hossain, M.T. Arafat, M. Asaduzzaman, M.S. Ullah, S.T. Zobaer, Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition, Measurement, 122 (2018) 380-391.
  • [17] K.A. Kumar, C. Ratnam, K.V. Rao, B. Murthy, Experimental studies of machining parameters on surface roughness, flank wear, cutting forces and work piece vibration in boring of AISI 4340 steels: modelling and optimization approach, SN Applied Sciences, 1 (2019) 26.
  • [18] M. Balaji, K.V. Rao, N.M. Rao, B. Murthy, Optimization of drilling parameters for drilling of TI-6Al-4V based on surface roughness, flank wear and drill vibration, Measurement, 114 (2018) 332-339.
  • [19] H. Ravindra, Y. Srinivasa, R. Krishnamurthy, Modelling of tool wear based on cutting forces in turning, Wear, 169 (1993) 25-32.
  • [20] Y. Huang, T.G. Dawson, Tool crater wear depth modeling in CBN hard turning, Wear, 258 (2005) 1455-1461.
  • [21] M. Kuntoğlu, A. Aslan, H. Sağlam, D.Y. Pimenov, K. Giasin, T. Mikolajczyk, Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via Tool Condition Monitoring System in turning of AISI 5140, Sensors, 20 (2020) 4377.
  • [22] M. Kuntoğlu, H. Sağlam, Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning, Measurement, (2020) 108582.
  • [23] M.M. Cutting, A practical handbook, Sandvik Coromant, (1994).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdullah Aslan 0000-0001-8348-3471

Yayımlanma Tarihi 25 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 1

Kaynak Göster

APA Aslan, A. (2021). Tornalama Parametrelerinin Kesme Sıcaklığı ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması. Türk Doğa Ve Fen Dergisi, 10(1), 109-118. https://doi.org/10.46810/tdfd.830053
AMA Aslan A. Tornalama Parametrelerinin Kesme Sıcaklığı ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması. TDFD. Haziran 2021;10(1):109-118. doi:10.46810/tdfd.830053
Chicago Aslan, Abdullah. “Tornalama Parametrelerinin Kesme Sıcaklığı Ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması”. Türk Doğa Ve Fen Dergisi 10, sy. 1 (Haziran 2021): 109-18. https://doi.org/10.46810/tdfd.830053.
EndNote Aslan A (01 Haziran 2021) Tornalama Parametrelerinin Kesme Sıcaklığı ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması. Türk Doğa ve Fen Dergisi 10 1 109–118.
IEEE A. Aslan, “Tornalama Parametrelerinin Kesme Sıcaklığı ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması”, TDFD, c. 10, sy. 1, ss. 109–118, 2021, doi: 10.46810/tdfd.830053.
ISNAD Aslan, Abdullah. “Tornalama Parametrelerinin Kesme Sıcaklığı Ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması”. Türk Doğa ve Fen Dergisi 10/1 (Haziran 2021), 109-118. https://doi.org/10.46810/tdfd.830053.
JAMA Aslan A. Tornalama Parametrelerinin Kesme Sıcaklığı ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması. TDFD. 2021;10:109–118.
MLA Aslan, Abdullah. “Tornalama Parametrelerinin Kesme Sıcaklığı Ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması”. Türk Doğa Ve Fen Dergisi, c. 10, sy. 1, 2021, ss. 109-18, doi:10.46810/tdfd.830053.
Vancouver Aslan A. Tornalama Parametrelerinin Kesme Sıcaklığı ve Krater Aşınması Üzerine Etkilerinin Deneysel Olarak Araştırılması. TDFD. 2021;10(1):109-18.