Derleme
BibTex RIS Kaynak Göster

mRNA SARS-CoV2 Specific and Childhood Vaccines against Covid-19 Pandemic

Yıl 2021, Cilt: 10 Sayı: 2, 338 - 350, 31.12.2021
https://doi.org/10.46810/tdfd.994622

Öz

The coronavirus disease 2019 (Covid-19) pandemic has been challenging the entire world since early 2020. Due to the fact that there is no universally available treatment method along with the disease’s fast transmission from human to human, specific vaccine development efforts have got a great attention. Particularly mRNA-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) specific vaccines are administrated to individuals worldwide to combat against Covid-19 infection. Even though two dose mRNA vaccination provides immunity against ancestral and aggressive variants of SARS-CoV2 infections, rare detrimental short-time side effects and no-data availability on long-term possible side-effects along with unpredictable vaccination regime bring hesitancy against the vaccines. Besides, the vaccination regime is still under debate among the scientist as that whether pre-infected individuals require further vaccination and what should be the ideal vaccination dose. In addition to mRNA SARS-CoV2 specific vaccines, recent retrospective, theoretical, clinical, and biochemical studies revealed that trained innate immunity and heterologous T-cells and memory B-cells can be strong alternative to combat against SARS-CoV2 pandemic. In this context, conventional childhood vaccines (e.g., BCG and MMR) are proposed as valuable alternative vaccines against the pandemic with known clinical outcomes and effectivity.

Kaynakça

  • [1] Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chinese Med Assoc 2020;83:217–20. https://doi.org/10.1097/JCMA.0000000000000270.
  • [2] Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang C Bin, Bernardini S. The COVID-19 pandemic. Crit Rev Clin Lab Sci 2020;57:365–88. https://doi.org/10.1080/10408363.2020.1783198.
  • [3] Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J Clin Med 2020;9:1225. https://doi.org/10.3390/jcm9041225.
  • [4] Brandal LT, Ofitserova TS, Meijerink H, Rykkvin R, Lund HM, Hungnes O, et al. Minimal transmission of SARS-CoV-2 from paediatric COVID-19 cases in primary schools, Norway, August to November 2020. Eurosurveillance 2020;26:2002011. https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002011.
  • [5] Durrheim DN, Andrus JK, Tabassum S, Bashour H, Githanga D, Pfaff G. A dangerous measles future looms beyond the COVID-19 pandemic. Nat Med 2021;27:360–1. https://doi.org/10.1038/s41591-021-01237-5.
  • [6] Kalina M, Tilley E. “This is our next problem”: Cleaning up from the COVID-19 response. Waste Manag 2020;108:202–5. https://doi.org/10.1016/j.wasman.2020.05.006.
  • [7] Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med 2021;23:1–11. https://doi.org/10.1002/jgm.3303.
  • [8] Chaturvedi P, Ramalingam N, Singh A. Is COVID‑19 man‑made? Cancer Res Stat Treat 2020;3:284.
  • [9] Segreto R, Deigin Y. The genetic structure of SARS-CoV-2 does not rule out a laboratory origin SARS-COV-2 chimeric structure and furin cleavage site might be the result of genetic manipulation. BioEssays 2021;43:2000240. https://doi.org/10.1002/bies.202000240.
  • [10] Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 2020;117. https://doi.org/10.1073/pnas.2003138117.
  • [11] Li F, Han M, Dai P, Xu W, He J, Tao X, et al. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nat Commun 2021;12:1–14. https://doi.org/10.1038/s41467-021-21171-x.
  • [12] Kumar V, Doshi KU, Khan WH, Rathore AS. COVID-19 pandemic: mechanism, diagnosis, and treatment. J Chem Technol Biotechnol 2021;96:299–308. https://doi.org/10.1002/jctb.6641.
  • [13] Or Caspi, Michael J. Smart RBN. Adaptive immunity to SARS-CoV-2 and COVID-19 Alessandro. Cell 2021.
  • [14] Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol 2020;202:193–209. https://doi.org/10.1111/cei.13523.
  • [15] Castro P, Palomo M, Moreno-Castaño AB, Fernández S, Torramadé-Moix S, Pascual G, et al. Is the Endothelium the Missing Link in the Pathophysiology and Treatment of COVID-19 Complications? Cardiovasc Drugs Ther 2021. https://doi.org/10.1007/s10557-021-07207-w.
  • [16] Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020;181:1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026.
  • [17] Theophanous C, Santoro JD, Itani R. Bell’s palsy in a pediatric patient with hyper IgM syndrome and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Brain Dev 2021;43:357–9. https://doi.org/10.1016/j.braindev.2020.08.017.
  • [18] Hanan N, Doud RL, Park IW, Jones HP, Mathew SO. The many faces of innate immunity in SARS-CoV-2 infection. Vaccines 2021;9:1–17. https://doi.org/10.3390/vaccines9060596.
  • [19] Noh JY, Jeong HW, Shin EC. SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern. Signal Transduct Target Ther 2021;6:3–4. https://doi.org/10.1038/s41392-021-00623-2.
  • [20] Lu M, Dravid P, Zhang Y, Trivedi S, Li A, Harder O, et al. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc Natl Acad Sci U S A 2021;118. https://doi.org/10.1073/pnas.2026153118.
  • [21] Chumakov K, Avidan MS, Benn CS, Bertozzi SM, Blatt L, Chang AY, et al. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics. Proc Natl Acad Sci U S A 2021;118:1–10. https://doi.org/10.1073/pnas.2101718118.
  • [22] Akarsu B, Canbay Özdemir D, Ayhan Baser D, Aksoy H, Fidancı İ, Cankurtaran M. While studies on COVID-19 vaccine is ongoing, the public’s thoughts and attitudes to the future COVID-19 vaccine. Int J Clin Pract 2021;75:1–10. https://doi.org/10.1111/ijcp.13891.
  • [23] Latkin CA, Dayton L, Yi G, Konstantopoulos A, Boodram B. Trust in a COVID-19 vaccine in the U.S.: A social-ecological perspective. Soc Sci Med 2021;270:113684.
  • [24] Fadda M, Suggs LS, Albanese E. Willingness to vaccinate against Covid-19: A qualitative study involving older adults from Southern Switzerland. Vaccine X 2021;8:100108. https://doi.org/10.1016/j.jvacx.2021.100108.
  • [25] Smith DT, Attwell K, Evers U. Support for a COVID-19 vaccine mandate in the face of safety concerns and political affiliations: An Australian study. Politics 2021:02633957211009066. https://doi.org/10.1177/02633957211009066.
  • [26] Subbaraman N. How do vaccinated people spread Delta? What the science says. Nature 2021;596:327–8. https://doi.org/10.1038/d41586-021-02187-1.
  • [27] Griffin S. Covid-19: Fully vaccinated people can carry as much delta virus as unvaccinated people, data indicate. Bmj 2021. https://doi.org/10.1136/bmj.n2074.
  • [28] Korn L, Böhm R, Betsch C. Reply to Rabb et al.: WhypromotingCOVID-19vaccineswithcommunity immunity is not a good strategy (yet). Proc Natl Acad Sci U S A 2021;118:e2102054118. https://doi.org/10.1073/PNAS.2102054118.
  • [29] Mahase E. Covid-19: Israel sees new infections plummet following vaccinations. BMJ 2021;372:n338. https://doi.org/10.1136/bmj.n338.
  • [30] Tenforde MW, Self WH, Naioti EA, Ginde AA, Douin DJ, Olson SM, et al. Sustained Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Associated Hospitalizations Among Adults — United States, March–July 2021. MMWR Morb Mortal Wkly Rep 2021;70:1156–62. https://doi.org/10.15585/mmwr.mm7034e2.
  • [31] Burki T. Understanding variants of SARS-CoV-2. Lancet 2021;397:462. https://doi.org/10.1016/S0140-6736(21)00298-1.
  • [32] Moutsopoulos HM, Zampeli E. Immunology and Rheumatology in Questions. 2nd ed. Cham, Switzerland: Springer; 2021. https://doi.org/10.1007/978-3-030-56670-8.
  • [33] Bertoletti A, Tan AT, Le Bert N. The T-cell response to SARS-CoV-2: kinetic and quantitative aspects and the case for their protective role. Oxford Open Immunol 2021;2:1–9. https://doi.org/10.1093/oxfimm/iqab006.
  • [34] Schijns V, Lavelle EC. Prevention and treatment of COVID-19 disease by controlled modulation of innate immunity. Eur J Immunol 2020;50:932–8. https://doi.org/10.1002/eji.202048693.
  • [35] Golonka RM, Saha P, Yeoh XBS, Chattopadhyay S, Gewirtz AT, Joe B, et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics 2020;52:217–21. https://doi.org/10.1152/PHYSIOLGENOMICS.00033.2020.
  • [36] Wang B, Wang L, Kong X, Geng J, Xiao D, Ma C, et al. Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients. J Med Virol 2020;92:1684–9. https://doi.org/10.1002/jmv.25946.
  • [37] Wang R, Zhang Q, Ge J, Ren W, Zhang R, Lan J, et al. Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 2021;54:1611-1621.e5. https://doi.org/10.1016/j.immuni.2021.06.003.
  • [38] Jordan SC. Innate and adaptive immune responses to SARS- ­ 2 in humans : relevance to acquired immunity and vaccine responses. Clin Exp Immunol 2021;204:310–20. https://doi.org/10.1111/cei.13582.
  • [39] Jahn M, Korth J, Dorsch O, Anastasiou OE, Sorge-Hädicke B, Tyczynski B, et al. Humoral response to SARS-CoV-2-vaccination with BNT162b2 (pfizer-biontech) in patients on hemodialysis. Vaccines 2021;9:1–8. https://doi.org/10.3390/vaccines9040360.
  • [40] Malipiero G, Moratto A, Infantino M, D’Agaro P, Piscianz E, Manfredi M, et al. Assessment of humoral and cellular immunity induced by the BNT162b2 SARS-CoV-2 vaccine in healthcare workers, elderly people, and immunosuppressed patients with autoimmune disease. Immunol Res 2021. https://doi.org/10.1007/s12026-021-09226-z.
  • [41] Struck F, Schreiner P, Staschik E, Wochinz-Richter K, Schulz S, Soutschek E, et al. Vaccination versus infection with SARS-CoV-2: Establishment of a high avidity IgG response versus incomplete avidity maturation. J Med Virol 2021:1–13. https://doi.org/10.1002/jmv.27270.
  • [42] Hall VG, Ferreira VH, Ierullo M, Ku T, Marinelli T, Majchrzak-Kita B, et al. Humoral and cellular immune response and safety of two-dose SARS-CoV-2 mRNA-1273 vaccine in solid organ transplant recipients. Am J Transplant 2021:1–10. https://doi.org/10.1111/ajt.16766.
  • [43] Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021;595:572–7. https://doi.org/10.1038/s41586-021-03653-6.
  • [44] Tarke A, Sidney J, Methot N, Yu ED, Zhang Y, Dan JM, et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Reports Med 2021;2:100355. https://doi.org/10.1016/j.xcrm.2021.100355.
  • [45] Nanduri S, Pilishvili T, Derado G, Soe MM, Dollard P, Wu H, et al. Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant — National Healthcare Safety Network, March 1–August. vol. 70. 2021. https://doi.org/10.15585/mmwr.mm7034e3.
  • [46] Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EJ, et al. Waning immunity of the BNT162b2 vaccine: A nationwide study from Israel. 2021.
  • [47] Harrington P, Doores KJ, Radia D, O’Reilly A, Lam HPJ, Seow J, et al. Single dose of BNT162b2 mRNA vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induces neutralising antibody and polyfunctional T-cell responses in patients with chronic myeloid leukaemia. Br J Haematol 2021;2. https://doi.org/10.1111/bjh.17568.
  • [48] Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science (80- ) 2020;370:1339–43. https://doi.org/10.1126/science.abe1107.
  • [49] Morales-Núñez JJ, Muñoz-Valle JF, Meza-López C, Wang LF, Sulbarán ACM, Torres-Hernández PC, et al. Neutralizing antibodies titers and side effects in response to bnt162b2 vaccine in healthcare workers with and without prior sars-cov-2 infection. Vaccines 2021;9. https://doi.org/10.3390/vaccines9070742.
  • [50] Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, et al. Responses To Variants After First Vaccine Dose. Science (80- ) 2021;1423:1418–23.
  • [51] Borgonovo F, Passerini M, Piscaglia M, Morena V, Giacomelli A, Oreni L, et al. Is COVID-19 severity associated with anti-spike antibody duration? Data from the ARCOVID prospective observational study. J Infect 2021.
  • [52] Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 2021;595:426–31. https://doi.org/10.1038/s41586-021-03696-9.
  • [53] Kabir KMA, Tanimoto J. Analysis of individual strategies for artificial and natural immunity with imperfectness and durability of protection. J Theor Biol 2021;509:110531. https://doi.org/10.1016/j.jtbi.2020.110531.
  • [54] Tada T, Dcosta BM, Samanovic MI, Herati RS, Cornelius A, Zhou H, et al. Convalescent-Phase Sera and Vaccine-Elicited Antibodies. MBio 2021;12:e00696-21.
  • [55] Pilz S, Chakeri A, Ioannidis JPA, Richter L, Theiler-Schwetz V, Trummer C, et al. SARS-CoV-2 re-infection risk in Austria. Eur J Clin Invest 2021;51:1–7. https://doi.org/10.1111/eci.13520.
  • [56] Gazit S, Shlezinger R, Perez G, Lotan R, Peretz A, Ben-Tov A, et al. Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections. 2021. https://doi.org/10.1016/b978-0-12-820546-4.00017-9.
  • [57] Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021;593:130–5. https://doi.org/10.1038/s41586-021-03398-2.
  • [58] Petersen LR, Sami S, Vong N, Pathela P, Weiss D, Morgenthau BM, et al. Lack of antibodies to SARS-CoV-2 in a large cohort of previously infected persons. Clin Infect Dis an Off Publ Infect Dis Soc Am 2020:ciaa1685.
  • [59] Schwarzkopf S, Adalbert Krawczyk, Knop D, Klump H, Heinold A, Heinemann FM, et al. Cellular Immunity in COVID-19 Convalescents with PCR-Confirmed Infection but with Undetectable SARS-CoV-2–Specific IgG. Emerg Infect Dis 2021;27:122.
  • [60] Park JY, Kim JH, Lee IJ, Kim H Il, Park S, Hwang Y Il, et al. COVID-19 vaccine-related interstitial lung disease: A case study. Thorax 2021:1–3. https://doi.org/10.1136/thoraxjnl-2021-217609.
  • [61] Ciccarese G, Drago F, Rebora A, Parodi A. Two cases of papulo‐pustular rosacea‐like eruptions following COVID‐19 vaccinations. J Eur Acad Dermatology Venereol 2021. https://doi.org/10.1111/jdv.17615.
  • [62] Shemer A, Pras E, Einan-Lifshitz A, Dubinsky-Pertzov B, Hecht I. Association of COVID-19 Vaccination and Facial Nerve Palsy: A Case-Control Study. JAMA Otolaryngol - Head Neck Surg 2021;147:739–43. https://doi.org/10.1001/jamaoto.2021.1259.
  • [63] de Vrieze J. Pfizer’s vaccine raises allergy concerns. Science (80- ) 2021.
  • [64] Waheed S, Bayas A, Hindi F, Rizvi Z, Espinosa PS. Neurological Complications of COVID-19: Guillain-Barre Syndrome Following Pfizer COVID-19 Vaccine. Cureus 2021;13:2. https://doi.org/10.7759/cureus.13426.
  • [65] Nassar M, Nso N, Elshafey M, Abdalazeem Y, Nyein A, Punzalan B, et al. COVID-19 vaccine-induced myocarditis: Case report with literature review. Diabetes Metab Syndr Clin Res Rev 2020;15:102205.
  • [66] Lee EJ, Cines DB, Gernsheimer T, Kessler C, Michel M, Tarantino MD, et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol 2021;96:534–7. https://doi.org/10.1002/ajh.26132.
  • [67] Malayala S V, Mohan G, Vasireddy D, Atluri P. Purpuric Rash and Thrombocytopenia After the mRNA-1273 (Moderna) COVID-19 Vaccine. Cureus 2021;13:3. https://doi.org/10.7759/cureus.14099.
  • [68] Steinberg J, Thomas A, Iravani A. 18F-fluorodeoxyglucose PET/CT findings in a systemic inflammatory response syndrome after COVID-19 vaccine. Lancet 2021;397:e9. https://doi.org/10.1016/S0140-6736(21)00464-5.
  • [69] Chatterjee S, Ojha UK, Vardhan B. Myocardial infarction after COVID-19 vaccination-casual or causal? Diabetes Metab Syndr Clin Res Rev 2021.
  • [70] Albert E, Aurigemma G, Saucedo J, Gerson DS. Myocarditis following COVID-19 vaccination. Radiol Case Reports 2021;16:2142–5. https://doi.org/10.1016/j.radcr.2021.05.033.
  • [71] Deb A, Abdelmalek J, Iwuji K, Nugent K. Acute Myocardial Injury Following COVID-19 Vaccination: A Case Report and Review of Current Evidence from Vaccine Adverse Events Reporting System Database. J Prim Care Community Heal 2021;12:0–4. https://doi.org/10.1177/21501327211029230.
  • [72] Jain VK, Iyengar KP, Ish P. Elucidating causes of COVID-19 infection and related deaths after vaccination. Diabetes Metab Syndr Clin Res Rev 2021;15:102212. https://doi.org/10.1016/j.dsx.2021.102212.
  • [73] Cereda A, Conca C, Barbieri L, Ferrante G, Tumminello G, Lucreziotti S, et al. Acute myocarditis after the second dose of SARS-CoV-2 vaccine: Serendipity or atypical causal relationship? Anatol J Cardiol 2021;25:522–3. https://doi.org/10.5152/AnatolJCardiol.2021.99.
  • [74] Pepe S, Gregory AT, Denniss AR. Myocarditis, Pericarditis and Cardiomyopathy After COVID-19 Vaccination. Hear Lung Circ 2021;30:1425–9. https://doi.org/10.1016/j.hlc.2021.07.011.
  • [75] Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, et al. Myocarditis following Immunization with mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol 2021;92134:1–5. https://doi.org/10.1001/jamacardio.2021.2833.
  • [76] Stephanie Seneff, Greg Nigh. Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19. Int J Vaccine Theory, Pract Res 2021;2:402–43.
  • [77] Gonzalez DC, Nassau DE, Khodamoradi K, Ibrahim E, Blachman-Braun R, Ory J, et al. Sperm Parameters Before andAfter COVID-19mRNA Vaccination. JAMA 2021. https://doi.org/10.1111/jgs.17136.
  • [78] Pazir Y, Eroglu T, Kose A, Bulut TB, Genc C, Kadihasanoglu M. Impaired semen parameters in patients with confirmed SARS-CoV-2 infection: A prospective cohort study. Andrologia 2021;53:e14157. https://doi.org/10.1111/and.14157.
  • [79] Frati P, Russa R La, Fazio N Di, Fante Z Del, Delogu G, Fineschi V. Compulsory Vaccination for Healthcare Workers in Italy for the Prevention of SARS-CoV-2 Infection. Vaccines 2021;9:966.
  • [80] Stokel-Walker C. Covid-19: The countries that have mandatory vaccination for health workers. BMJ 2021:273. https://doi.org/10.1136/bmj.n327.
  • [81] Krick MJA, Reese MTR. Mandating the COVID-19 Vaccine for U.S. Service Members : An Exploration of Ethical Arguments. Mil Med 2021.
  • [82] Dyer O. Covid-19: Turkmenistan becomes first country to make vaccination mandatory for all adults. BMJ 2021. https://doi.org/10.1136/bmj.n1766.
  • [83] Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L, et al. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect J 2021;27:1109–17.
  • [84] Seppälä E, Veneti L, Starrfelt J, Danielsen AS, Bragstad K, Hungnes O, et al. Vaccine effectiveness against infection with the Delta (B.1.617.2) variant, Norway, April to August 2021. Eurosurveillance 2021;26:2100793. https://doi.org/10.2807/1560-7917.es.2021.26.35.2100793.
  • [85] Roberts AT, Piani F, Longo B, Andreini R, Meini S. Reinfection of SARS-CoV-2–analysis of 23 cases from the literature. Infect Dis (Auckl) 2021;53:479–85. https://doi.org/10.1080/23744235.2021.1905174.
  • [86] Loske J, Röhmel J, Lukassen S, Stricker S, Magalhães VG, Liebig J, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat Biotechnol 2021:1–6. https://doi.org/10.1038/s41587-021-01037-9.
  • [87] Pawlowski C, Puranik A, Bandi H, Venkatakrishnan AJ, Agarwal V, Kennedy R, et al. Exploratory analysis of immunization records highlights decreased SARS-CoV-2 rates in individuals with recent non-COVID-19 vaccinations. Sci Rep 2021;11:1–20. https://doi.org/10.1038/s41598-021-83641-y.
  • [88] Haddad-Boubaker S, Othman H, Touati R, Ayouni K, Lakhal M, Ben Mustapha I, et al. In silico comparative study of SARS-CoV-2 proteins and antigenic proteins in BCG, OPV, MMR and other vaccines: evidence of a possible putative protective effect. BMC Bioinformatics 2021;22:1–14. https://doi.org/10.1186/s12859-021-04045-3.
  • [89] Hassani D, Amiri MM, Maghsood F, Salimi V, Kardar GA, Barati O, et al. Does prior immunization with measles, mumps, and rubella vaccines contribute to the antibody response to COVID-19 antigens? Iran J Immunol 2021;18:47–67. https://doi.org/10.22034/iji.2021.87990.1843.
  • [90] Lundberg L, Bygdell M, Stukat von Feilitzen G, Woxenius S, Ohlsson C, Kindblom JM, et al. Recent MMR vaccination in health care workers and Covid-19: A test negative case-control study. Vaccine 2021;39:4414–8. https://doi.org/10.1016/j.vaccine.2021.06.045.
  • [91] Gold JE, Baumgarti WH, Okyay RA, Licht WE, Fidel PLJ, Noverr MC, et al. Analysis of Measles-Mumps-Rubella (MMR) Titers of Recovered COVID-19 Patients. MB 2020;11:e02628-20. https://doi.org/10.1128/mBio.02628-20.
  • [92] Yengil E, Onlen Y, Ozer C, Hambolat M, Ozdogan M. Effectiveness of booster measles-mumps-rubella vaccination in lower covid-19 infection rates: A retrospective cohort study in turkish adults. Int J Gen Med 2021;14:1757–62. https://doi.org/10.2147/IJGM.S309022.
  • [93] Mysore V, Cullere X, Settles ML, Ji X, Kattan MW, Desjardins M, et al. Protective heterologous T cell immunity in COVID-19 induced by the trivalent Measles-Mumps-Rubella and Tetanus-Diptheria-Pertussis vaccine antigens. Med 2021. https://doi.org/10.1016/j.medj.2021.08.004.
  • [94] Onwude J, Sokunbi D. Worldwide Childhood Mortality from Covid-19. Ann Pediatr 2021;4:1069.
  • [95] Ashford JW, Gold JE, Huenergardt MJA, Katz RBA, Strand SE, Bolanos J, et al. MMR Vaccination: A Potential Strategy to Reduce Severity and Mortality of COVID-19 Illness. Am J Med 2021;134:153–5. https://doi.org/10.1016/j.amjmed.2020.10.003.
  • [96] Larenas-Linnemann DE, Rodríguez-Monroy F. Thirty-six COVID-19 cases preventively vaccinated with mumps-measles-rubella vaccine: All mild course. Allergy 2021;76:910–4. https://doi.org/10.1111/all.14584.
  • [97] Aspatwar A, Gong W, Wang S, Wu X, Parkkila S. Tuberculosis vaccine BCG: the magical effect of the old vaccine in the fight against the COVID-19 pandemic. Int Rev Immunol 2021;0:1–14. https://doi.org/10.1080/08830185.2021.1922685.
  • [98] Tomita Y, Sato R, Ikeda T, Sakagami T. BCG vaccine may generate cross-reactive T cells against SARS-CoV-2: In silico analyses and a hypothesis. Vaccine 2020;38:6352–6. https://doi.org/10.1016/j.vaccine.2020.08.045.
  • [99] Nuovo G, Tili E, Suster D, Matys E, Hupp L, Magro C. Strong homology between SARS-CoV-2 envelope protein and a Mycobacterium sp. antigen allows rapid diagnosis of Mycobacterial infections and may provide specific anti-SARS-CoV-2 immunity via the BCG vaccine. Ann Diagn Pathol 2020;48:151600. https://doi.org/10.1016/j.anndiagpath.2020.151600.
  • [100] Gong W, Aspatwar A, Wang S, Parkkila S, Wu X. COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials. Expert Rev Vaccines 2021;20:857–80. https://doi.org/10.1080/14760584.2021.1938550.
  • [101] Eggenhuizen PJ, Ng BH, Chang J, Fell AL, Cheong RMY, Wong WY, et al. BCG Vaccine Derived Peptides Induce SARS-CoV-2 T Cell Cross-Reactivity. Front Immunol 2021;12:692729. https://doi.org/10.3389/fimmu.2021.692729.
  • [102] Arlehamn CSL, Sette A, Peters B. Lack of evidence for BCG vaccine protection from severe COVID-19. Proc Natl Acad Sci U S A 2020;117:25203–4. https://doi.org/10.1073/pnas.2016733117.
  • [103] Patella V, Delfino G, Bruzzese D, Giuliano A, Sanduzzi A. The bacillus Calmette-Guérin vaccination allows the innate immune system to provide protection from severe COVID-19 infection. Proc Natl Acad Sci U S A 2020;117:25205–6. https://doi.org/10.1073/pnas.2015234117.
  • [104] Nomura S, Eguchi A, Yoneoka D, Kawashima T, Tanoue Y, Murakami M, et al. Reasons for being unsure or unwilling regarding intention to take COVID-19 vaccine among Japanese people: A large cross-sectional national survey. Lancet Reg Heal - West Pacific 2021;14:100223. https://doi.org/10.1016/j.lanwpc.2021.100223.
  • [105] Sarfraz Z, Sarfraz A, Pandav K, Singh Makkar S, Hasan Siddiqui S, Patel G, et al. Variances in BCG protection against COVID-19 mortality: A global assessment. J Clin Tuberc Other Mycobact Dis 2021;24:100249. https://doi.org/10.1016/j.jctube.2021.100249.

Covid-19’a karşı mRNA SARS-CoV2 spesifik ve Çocukluk Dönemi Aşıları

Yıl 2021, Cilt: 10 Sayı: 2, 338 - 350, 31.12.2021
https://doi.org/10.46810/tdfd.994622

Öz

2019 yılı koronavirus hastalığı (Covid-19) pandemisi 2020 yılından beri dünya çapında bir sorun haline gelmiştir. Evrensel olarak kabul edilmiş bir tedavisinin olmayışı ve insandan-insana geçişinin hızlı olması nedeniyle spesifik aşı geliştirme çalışmaları önem kazanmıştır. mRNA-temelli ağır akut solunum yolu yetersizliği sendromu korovirus 2 (SARS-CoV2) aşıları dünya çapında Covid-19’un kontrol altına alınmasına yönelik olarak en yaygın olarak kullanılan aşılardır. Herne kadar iki doz mRNA aşılarının hem atasal hemde mutasyona uğramış agresif SARS-CoV2 viral enfeksiyonlarına karşı yüksek bağışıklık sağlıyor olmalarına karşın, nadir olarak görülen kısa dönem yan etkileri ve uzun dönemli olası yan etkileri hakkında bilgilerin mevcut olmaması nedeniyle aşılara karşı bir tereddüt mevcuttur. Buna ek olarak, aşılama rejimin nasıl olması gerektiği bilimadaları arasında hala tartışma konusudur, örneğin enfeksiyon geçirmiş olan bireyler tekrar aşı olmalı mı ve kaç doz aşı olunması gerekir. mRNA temelli SARS-CoV2 aşılarına alternatif olarak, yeni yapılan retrospektif, teorik, klinik ve biyokimyasal çalışmalar, eğitilmiş doğal bağışıklığın ve heterelog T-hücrelerinin ve hafıza B hücrelerinin SARS-CoV2 pandemisine karşı savaşta önemli bir alternatif olabileceği önerilmiştir. Bu kapsamda, klasik çocukluk dönemi aşılarının (örneğin BCG ve MMR) pandemiye karşı bilinen klinik souçları ve etkinliği nedeniyle önemli alternatif aşılar oldukları görülmektedir.

Kaynakça

  • [1] Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chinese Med Assoc 2020;83:217–20. https://doi.org/10.1097/JCMA.0000000000000270.
  • [2] Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang C Bin, Bernardini S. The COVID-19 pandemic. Crit Rev Clin Lab Sci 2020;57:365–88. https://doi.org/10.1080/10408363.2020.1783198.
  • [3] Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J Clin Med 2020;9:1225. https://doi.org/10.3390/jcm9041225.
  • [4] Brandal LT, Ofitserova TS, Meijerink H, Rykkvin R, Lund HM, Hungnes O, et al. Minimal transmission of SARS-CoV-2 from paediatric COVID-19 cases in primary schools, Norway, August to November 2020. Eurosurveillance 2020;26:2002011. https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002011.
  • [5] Durrheim DN, Andrus JK, Tabassum S, Bashour H, Githanga D, Pfaff G. A dangerous measles future looms beyond the COVID-19 pandemic. Nat Med 2021;27:360–1. https://doi.org/10.1038/s41591-021-01237-5.
  • [6] Kalina M, Tilley E. “This is our next problem”: Cleaning up from the COVID-19 response. Waste Manag 2020;108:202–5. https://doi.org/10.1016/j.wasman.2020.05.006.
  • [7] Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med 2021;23:1–11. https://doi.org/10.1002/jgm.3303.
  • [8] Chaturvedi P, Ramalingam N, Singh A. Is COVID‑19 man‑made? Cancer Res Stat Treat 2020;3:284.
  • [9] Segreto R, Deigin Y. The genetic structure of SARS-CoV-2 does not rule out a laboratory origin SARS-COV-2 chimeric structure and furin cleavage site might be the result of genetic manipulation. BioEssays 2021;43:2000240. https://doi.org/10.1002/bies.202000240.
  • [10] Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 2020;117. https://doi.org/10.1073/pnas.2003138117.
  • [11] Li F, Han M, Dai P, Xu W, He J, Tao X, et al. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nat Commun 2021;12:1–14. https://doi.org/10.1038/s41467-021-21171-x.
  • [12] Kumar V, Doshi KU, Khan WH, Rathore AS. COVID-19 pandemic: mechanism, diagnosis, and treatment. J Chem Technol Biotechnol 2021;96:299–308. https://doi.org/10.1002/jctb.6641.
  • [13] Or Caspi, Michael J. Smart RBN. Adaptive immunity to SARS-CoV-2 and COVID-19 Alessandro. Cell 2021.
  • [14] Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol 2020;202:193–209. https://doi.org/10.1111/cei.13523.
  • [15] Castro P, Palomo M, Moreno-Castaño AB, Fernández S, Torramadé-Moix S, Pascual G, et al. Is the Endothelium the Missing Link in the Pathophysiology and Treatment of COVID-19 Complications? Cardiovasc Drugs Ther 2021. https://doi.org/10.1007/s10557-021-07207-w.
  • [16] Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020;181:1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026.
  • [17] Theophanous C, Santoro JD, Itani R. Bell’s palsy in a pediatric patient with hyper IgM syndrome and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Brain Dev 2021;43:357–9. https://doi.org/10.1016/j.braindev.2020.08.017.
  • [18] Hanan N, Doud RL, Park IW, Jones HP, Mathew SO. The many faces of innate immunity in SARS-CoV-2 infection. Vaccines 2021;9:1–17. https://doi.org/10.3390/vaccines9060596.
  • [19] Noh JY, Jeong HW, Shin EC. SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern. Signal Transduct Target Ther 2021;6:3–4. https://doi.org/10.1038/s41392-021-00623-2.
  • [20] Lu M, Dravid P, Zhang Y, Trivedi S, Li A, Harder O, et al. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc Natl Acad Sci U S A 2021;118. https://doi.org/10.1073/pnas.2026153118.
  • [21] Chumakov K, Avidan MS, Benn CS, Bertozzi SM, Blatt L, Chang AY, et al. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics. Proc Natl Acad Sci U S A 2021;118:1–10. https://doi.org/10.1073/pnas.2101718118.
  • [22] Akarsu B, Canbay Özdemir D, Ayhan Baser D, Aksoy H, Fidancı İ, Cankurtaran M. While studies on COVID-19 vaccine is ongoing, the public’s thoughts and attitudes to the future COVID-19 vaccine. Int J Clin Pract 2021;75:1–10. https://doi.org/10.1111/ijcp.13891.
  • [23] Latkin CA, Dayton L, Yi G, Konstantopoulos A, Boodram B. Trust in a COVID-19 vaccine in the U.S.: A social-ecological perspective. Soc Sci Med 2021;270:113684.
  • [24] Fadda M, Suggs LS, Albanese E. Willingness to vaccinate against Covid-19: A qualitative study involving older adults from Southern Switzerland. Vaccine X 2021;8:100108. https://doi.org/10.1016/j.jvacx.2021.100108.
  • [25] Smith DT, Attwell K, Evers U. Support for a COVID-19 vaccine mandate in the face of safety concerns and political affiliations: An Australian study. Politics 2021:02633957211009066. https://doi.org/10.1177/02633957211009066.
  • [26] Subbaraman N. How do vaccinated people spread Delta? What the science says. Nature 2021;596:327–8. https://doi.org/10.1038/d41586-021-02187-1.
  • [27] Griffin S. Covid-19: Fully vaccinated people can carry as much delta virus as unvaccinated people, data indicate. Bmj 2021. https://doi.org/10.1136/bmj.n2074.
  • [28] Korn L, Böhm R, Betsch C. Reply to Rabb et al.: WhypromotingCOVID-19vaccineswithcommunity immunity is not a good strategy (yet). Proc Natl Acad Sci U S A 2021;118:e2102054118. https://doi.org/10.1073/PNAS.2102054118.
  • [29] Mahase E. Covid-19: Israel sees new infections plummet following vaccinations. BMJ 2021;372:n338. https://doi.org/10.1136/bmj.n338.
  • [30] Tenforde MW, Self WH, Naioti EA, Ginde AA, Douin DJ, Olson SM, et al. Sustained Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Associated Hospitalizations Among Adults — United States, March–July 2021. MMWR Morb Mortal Wkly Rep 2021;70:1156–62. https://doi.org/10.15585/mmwr.mm7034e2.
  • [31] Burki T. Understanding variants of SARS-CoV-2. Lancet 2021;397:462. https://doi.org/10.1016/S0140-6736(21)00298-1.
  • [32] Moutsopoulos HM, Zampeli E. Immunology and Rheumatology in Questions. 2nd ed. Cham, Switzerland: Springer; 2021. https://doi.org/10.1007/978-3-030-56670-8.
  • [33] Bertoletti A, Tan AT, Le Bert N. The T-cell response to SARS-CoV-2: kinetic and quantitative aspects and the case for their protective role. Oxford Open Immunol 2021;2:1–9. https://doi.org/10.1093/oxfimm/iqab006.
  • [34] Schijns V, Lavelle EC. Prevention and treatment of COVID-19 disease by controlled modulation of innate immunity. Eur J Immunol 2020;50:932–8. https://doi.org/10.1002/eji.202048693.
  • [35] Golonka RM, Saha P, Yeoh XBS, Chattopadhyay S, Gewirtz AT, Joe B, et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics 2020;52:217–21. https://doi.org/10.1152/PHYSIOLGENOMICS.00033.2020.
  • [36] Wang B, Wang L, Kong X, Geng J, Xiao D, Ma C, et al. Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients. J Med Virol 2020;92:1684–9. https://doi.org/10.1002/jmv.25946.
  • [37] Wang R, Zhang Q, Ge J, Ren W, Zhang R, Lan J, et al. Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 2021;54:1611-1621.e5. https://doi.org/10.1016/j.immuni.2021.06.003.
  • [38] Jordan SC. Innate and adaptive immune responses to SARS- ­ 2 in humans : relevance to acquired immunity and vaccine responses. Clin Exp Immunol 2021;204:310–20. https://doi.org/10.1111/cei.13582.
  • [39] Jahn M, Korth J, Dorsch O, Anastasiou OE, Sorge-Hädicke B, Tyczynski B, et al. Humoral response to SARS-CoV-2-vaccination with BNT162b2 (pfizer-biontech) in patients on hemodialysis. Vaccines 2021;9:1–8. https://doi.org/10.3390/vaccines9040360.
  • [40] Malipiero G, Moratto A, Infantino M, D’Agaro P, Piscianz E, Manfredi M, et al. Assessment of humoral and cellular immunity induced by the BNT162b2 SARS-CoV-2 vaccine in healthcare workers, elderly people, and immunosuppressed patients with autoimmune disease. Immunol Res 2021. https://doi.org/10.1007/s12026-021-09226-z.
  • [41] Struck F, Schreiner P, Staschik E, Wochinz-Richter K, Schulz S, Soutschek E, et al. Vaccination versus infection with SARS-CoV-2: Establishment of a high avidity IgG response versus incomplete avidity maturation. J Med Virol 2021:1–13. https://doi.org/10.1002/jmv.27270.
  • [42] Hall VG, Ferreira VH, Ierullo M, Ku T, Marinelli T, Majchrzak-Kita B, et al. Humoral and cellular immune response and safety of two-dose SARS-CoV-2 mRNA-1273 vaccine in solid organ transplant recipients. Am J Transplant 2021:1–10. https://doi.org/10.1111/ajt.16766.
  • [43] Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021;595:572–7. https://doi.org/10.1038/s41586-021-03653-6.
  • [44] Tarke A, Sidney J, Methot N, Yu ED, Zhang Y, Dan JM, et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Reports Med 2021;2:100355. https://doi.org/10.1016/j.xcrm.2021.100355.
  • [45] Nanduri S, Pilishvili T, Derado G, Soe MM, Dollard P, Wu H, et al. Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant — National Healthcare Safety Network, March 1–August. vol. 70. 2021. https://doi.org/10.15585/mmwr.mm7034e3.
  • [46] Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EJ, et al. Waning immunity of the BNT162b2 vaccine: A nationwide study from Israel. 2021.
  • [47] Harrington P, Doores KJ, Radia D, O’Reilly A, Lam HPJ, Seow J, et al. Single dose of BNT162b2 mRNA vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induces neutralising antibody and polyfunctional T-cell responses in patients with chronic myeloid leukaemia. Br J Haematol 2021;2. https://doi.org/10.1111/bjh.17568.
  • [48] Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science (80- ) 2020;370:1339–43. https://doi.org/10.1126/science.abe1107.
  • [49] Morales-Núñez JJ, Muñoz-Valle JF, Meza-López C, Wang LF, Sulbarán ACM, Torres-Hernández PC, et al. Neutralizing antibodies titers and side effects in response to bnt162b2 vaccine in healthcare workers with and without prior sars-cov-2 infection. Vaccines 2021;9. https://doi.org/10.3390/vaccines9070742.
  • [50] Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, et al. Responses To Variants After First Vaccine Dose. Science (80- ) 2021;1423:1418–23.
  • [51] Borgonovo F, Passerini M, Piscaglia M, Morena V, Giacomelli A, Oreni L, et al. Is COVID-19 severity associated with anti-spike antibody duration? Data from the ARCOVID prospective observational study. J Infect 2021.
  • [52] Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 2021;595:426–31. https://doi.org/10.1038/s41586-021-03696-9.
  • [53] Kabir KMA, Tanimoto J. Analysis of individual strategies for artificial and natural immunity with imperfectness and durability of protection. J Theor Biol 2021;509:110531. https://doi.org/10.1016/j.jtbi.2020.110531.
  • [54] Tada T, Dcosta BM, Samanovic MI, Herati RS, Cornelius A, Zhou H, et al. Convalescent-Phase Sera and Vaccine-Elicited Antibodies. MBio 2021;12:e00696-21.
  • [55] Pilz S, Chakeri A, Ioannidis JPA, Richter L, Theiler-Schwetz V, Trummer C, et al. SARS-CoV-2 re-infection risk in Austria. Eur J Clin Invest 2021;51:1–7. https://doi.org/10.1111/eci.13520.
  • [56] Gazit S, Shlezinger R, Perez G, Lotan R, Peretz A, Ben-Tov A, et al. Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections. 2021. https://doi.org/10.1016/b978-0-12-820546-4.00017-9.
  • [57] Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021;593:130–5. https://doi.org/10.1038/s41586-021-03398-2.
  • [58] Petersen LR, Sami S, Vong N, Pathela P, Weiss D, Morgenthau BM, et al. Lack of antibodies to SARS-CoV-2 in a large cohort of previously infected persons. Clin Infect Dis an Off Publ Infect Dis Soc Am 2020:ciaa1685.
  • [59] Schwarzkopf S, Adalbert Krawczyk, Knop D, Klump H, Heinold A, Heinemann FM, et al. Cellular Immunity in COVID-19 Convalescents with PCR-Confirmed Infection but with Undetectable SARS-CoV-2–Specific IgG. Emerg Infect Dis 2021;27:122.
  • [60] Park JY, Kim JH, Lee IJ, Kim H Il, Park S, Hwang Y Il, et al. COVID-19 vaccine-related interstitial lung disease: A case study. Thorax 2021:1–3. https://doi.org/10.1136/thoraxjnl-2021-217609.
  • [61] Ciccarese G, Drago F, Rebora A, Parodi A. Two cases of papulo‐pustular rosacea‐like eruptions following COVID‐19 vaccinations. J Eur Acad Dermatology Venereol 2021. https://doi.org/10.1111/jdv.17615.
  • [62] Shemer A, Pras E, Einan-Lifshitz A, Dubinsky-Pertzov B, Hecht I. Association of COVID-19 Vaccination and Facial Nerve Palsy: A Case-Control Study. JAMA Otolaryngol - Head Neck Surg 2021;147:739–43. https://doi.org/10.1001/jamaoto.2021.1259.
  • [63] de Vrieze J. Pfizer’s vaccine raises allergy concerns. Science (80- ) 2021.
  • [64] Waheed S, Bayas A, Hindi F, Rizvi Z, Espinosa PS. Neurological Complications of COVID-19: Guillain-Barre Syndrome Following Pfizer COVID-19 Vaccine. Cureus 2021;13:2. https://doi.org/10.7759/cureus.13426.
  • [65] Nassar M, Nso N, Elshafey M, Abdalazeem Y, Nyein A, Punzalan B, et al. COVID-19 vaccine-induced myocarditis: Case report with literature review. Diabetes Metab Syndr Clin Res Rev 2020;15:102205.
  • [66] Lee EJ, Cines DB, Gernsheimer T, Kessler C, Michel M, Tarantino MD, et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol 2021;96:534–7. https://doi.org/10.1002/ajh.26132.
  • [67] Malayala S V, Mohan G, Vasireddy D, Atluri P. Purpuric Rash and Thrombocytopenia After the mRNA-1273 (Moderna) COVID-19 Vaccine. Cureus 2021;13:3. https://doi.org/10.7759/cureus.14099.
  • [68] Steinberg J, Thomas A, Iravani A. 18F-fluorodeoxyglucose PET/CT findings in a systemic inflammatory response syndrome after COVID-19 vaccine. Lancet 2021;397:e9. https://doi.org/10.1016/S0140-6736(21)00464-5.
  • [69] Chatterjee S, Ojha UK, Vardhan B. Myocardial infarction after COVID-19 vaccination-casual or causal? Diabetes Metab Syndr Clin Res Rev 2021.
  • [70] Albert E, Aurigemma G, Saucedo J, Gerson DS. Myocarditis following COVID-19 vaccination. Radiol Case Reports 2021;16:2142–5. https://doi.org/10.1016/j.radcr.2021.05.033.
  • [71] Deb A, Abdelmalek J, Iwuji K, Nugent K. Acute Myocardial Injury Following COVID-19 Vaccination: A Case Report and Review of Current Evidence from Vaccine Adverse Events Reporting System Database. J Prim Care Community Heal 2021;12:0–4. https://doi.org/10.1177/21501327211029230.
  • [72] Jain VK, Iyengar KP, Ish P. Elucidating causes of COVID-19 infection and related deaths after vaccination. Diabetes Metab Syndr Clin Res Rev 2021;15:102212. https://doi.org/10.1016/j.dsx.2021.102212.
  • [73] Cereda A, Conca C, Barbieri L, Ferrante G, Tumminello G, Lucreziotti S, et al. Acute myocarditis after the second dose of SARS-CoV-2 vaccine: Serendipity or atypical causal relationship? Anatol J Cardiol 2021;25:522–3. https://doi.org/10.5152/AnatolJCardiol.2021.99.
  • [74] Pepe S, Gregory AT, Denniss AR. Myocarditis, Pericarditis and Cardiomyopathy After COVID-19 Vaccination. Hear Lung Circ 2021;30:1425–9. https://doi.org/10.1016/j.hlc.2021.07.011.
  • [75] Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, et al. Myocarditis following Immunization with mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol 2021;92134:1–5. https://doi.org/10.1001/jamacardio.2021.2833.
  • [76] Stephanie Seneff, Greg Nigh. Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19. Int J Vaccine Theory, Pract Res 2021;2:402–43.
  • [77] Gonzalez DC, Nassau DE, Khodamoradi K, Ibrahim E, Blachman-Braun R, Ory J, et al. Sperm Parameters Before andAfter COVID-19mRNA Vaccination. JAMA 2021. https://doi.org/10.1111/jgs.17136.
  • [78] Pazir Y, Eroglu T, Kose A, Bulut TB, Genc C, Kadihasanoglu M. Impaired semen parameters in patients with confirmed SARS-CoV-2 infection: A prospective cohort study. Andrologia 2021;53:e14157. https://doi.org/10.1111/and.14157.
  • [79] Frati P, Russa R La, Fazio N Di, Fante Z Del, Delogu G, Fineschi V. Compulsory Vaccination for Healthcare Workers in Italy for the Prevention of SARS-CoV-2 Infection. Vaccines 2021;9:966.
  • [80] Stokel-Walker C. Covid-19: The countries that have mandatory vaccination for health workers. BMJ 2021:273. https://doi.org/10.1136/bmj.n327.
  • [81] Krick MJA, Reese MTR. Mandating the COVID-19 Vaccine for U.S. Service Members : An Exploration of Ethical Arguments. Mil Med 2021.
  • [82] Dyer O. Covid-19: Turkmenistan becomes first country to make vaccination mandatory for all adults. BMJ 2021. https://doi.org/10.1136/bmj.n1766.
  • [83] Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L, et al. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect J 2021;27:1109–17.
  • [84] Seppälä E, Veneti L, Starrfelt J, Danielsen AS, Bragstad K, Hungnes O, et al. Vaccine effectiveness against infection with the Delta (B.1.617.2) variant, Norway, April to August 2021. Eurosurveillance 2021;26:2100793. https://doi.org/10.2807/1560-7917.es.2021.26.35.2100793.
  • [85] Roberts AT, Piani F, Longo B, Andreini R, Meini S. Reinfection of SARS-CoV-2–analysis of 23 cases from the literature. Infect Dis (Auckl) 2021;53:479–85. https://doi.org/10.1080/23744235.2021.1905174.
  • [86] Loske J, Röhmel J, Lukassen S, Stricker S, Magalhães VG, Liebig J, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat Biotechnol 2021:1–6. https://doi.org/10.1038/s41587-021-01037-9.
  • [87] Pawlowski C, Puranik A, Bandi H, Venkatakrishnan AJ, Agarwal V, Kennedy R, et al. Exploratory analysis of immunization records highlights decreased SARS-CoV-2 rates in individuals with recent non-COVID-19 vaccinations. Sci Rep 2021;11:1–20. https://doi.org/10.1038/s41598-021-83641-y.
  • [88] Haddad-Boubaker S, Othman H, Touati R, Ayouni K, Lakhal M, Ben Mustapha I, et al. In silico comparative study of SARS-CoV-2 proteins and antigenic proteins in BCG, OPV, MMR and other vaccines: evidence of a possible putative protective effect. BMC Bioinformatics 2021;22:1–14. https://doi.org/10.1186/s12859-021-04045-3.
  • [89] Hassani D, Amiri MM, Maghsood F, Salimi V, Kardar GA, Barati O, et al. Does prior immunization with measles, mumps, and rubella vaccines contribute to the antibody response to COVID-19 antigens? Iran J Immunol 2021;18:47–67. https://doi.org/10.22034/iji.2021.87990.1843.
  • [90] Lundberg L, Bygdell M, Stukat von Feilitzen G, Woxenius S, Ohlsson C, Kindblom JM, et al. Recent MMR vaccination in health care workers and Covid-19: A test negative case-control study. Vaccine 2021;39:4414–8. https://doi.org/10.1016/j.vaccine.2021.06.045.
  • [91] Gold JE, Baumgarti WH, Okyay RA, Licht WE, Fidel PLJ, Noverr MC, et al. Analysis of Measles-Mumps-Rubella (MMR) Titers of Recovered COVID-19 Patients. MB 2020;11:e02628-20. https://doi.org/10.1128/mBio.02628-20.
  • [92] Yengil E, Onlen Y, Ozer C, Hambolat M, Ozdogan M. Effectiveness of booster measles-mumps-rubella vaccination in lower covid-19 infection rates: A retrospective cohort study in turkish adults. Int J Gen Med 2021;14:1757–62. https://doi.org/10.2147/IJGM.S309022.
  • [93] Mysore V, Cullere X, Settles ML, Ji X, Kattan MW, Desjardins M, et al. Protective heterologous T cell immunity in COVID-19 induced by the trivalent Measles-Mumps-Rubella and Tetanus-Diptheria-Pertussis vaccine antigens. Med 2021. https://doi.org/10.1016/j.medj.2021.08.004.
  • [94] Onwude J, Sokunbi D. Worldwide Childhood Mortality from Covid-19. Ann Pediatr 2021;4:1069.
  • [95] Ashford JW, Gold JE, Huenergardt MJA, Katz RBA, Strand SE, Bolanos J, et al. MMR Vaccination: A Potential Strategy to Reduce Severity and Mortality of COVID-19 Illness. Am J Med 2021;134:153–5. https://doi.org/10.1016/j.amjmed.2020.10.003.
  • [96] Larenas-Linnemann DE, Rodríguez-Monroy F. Thirty-six COVID-19 cases preventively vaccinated with mumps-measles-rubella vaccine: All mild course. Allergy 2021;76:910–4. https://doi.org/10.1111/all.14584.
  • [97] Aspatwar A, Gong W, Wang S, Wu X, Parkkila S. Tuberculosis vaccine BCG: the magical effect of the old vaccine in the fight against the COVID-19 pandemic. Int Rev Immunol 2021;0:1–14. https://doi.org/10.1080/08830185.2021.1922685.
  • [98] Tomita Y, Sato R, Ikeda T, Sakagami T. BCG vaccine may generate cross-reactive T cells against SARS-CoV-2: In silico analyses and a hypothesis. Vaccine 2020;38:6352–6. https://doi.org/10.1016/j.vaccine.2020.08.045.
  • [99] Nuovo G, Tili E, Suster D, Matys E, Hupp L, Magro C. Strong homology between SARS-CoV-2 envelope protein and a Mycobacterium sp. antigen allows rapid diagnosis of Mycobacterial infections and may provide specific anti-SARS-CoV-2 immunity via the BCG vaccine. Ann Diagn Pathol 2020;48:151600. https://doi.org/10.1016/j.anndiagpath.2020.151600.
  • [100] Gong W, Aspatwar A, Wang S, Parkkila S, Wu X. COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials. Expert Rev Vaccines 2021;20:857–80. https://doi.org/10.1080/14760584.2021.1938550.
  • [101] Eggenhuizen PJ, Ng BH, Chang J, Fell AL, Cheong RMY, Wong WY, et al. BCG Vaccine Derived Peptides Induce SARS-CoV-2 T Cell Cross-Reactivity. Front Immunol 2021;12:692729. https://doi.org/10.3389/fimmu.2021.692729.
  • [102] Arlehamn CSL, Sette A, Peters B. Lack of evidence for BCG vaccine protection from severe COVID-19. Proc Natl Acad Sci U S A 2020;117:25203–4. https://doi.org/10.1073/pnas.2016733117.
  • [103] Patella V, Delfino G, Bruzzese D, Giuliano A, Sanduzzi A. The bacillus Calmette-Guérin vaccination allows the innate immune system to provide protection from severe COVID-19 infection. Proc Natl Acad Sci U S A 2020;117:25205–6. https://doi.org/10.1073/pnas.2015234117.
  • [104] Nomura S, Eguchi A, Yoneoka D, Kawashima T, Tanoue Y, Murakami M, et al. Reasons for being unsure or unwilling regarding intention to take COVID-19 vaccine among Japanese people: A large cross-sectional national survey. Lancet Reg Heal - West Pacific 2021;14:100223. https://doi.org/10.1016/j.lanwpc.2021.100223.
  • [105] Sarfraz Z, Sarfraz A, Pandav K, Singh Makkar S, Hasan Siddiqui S, Patel G, et al. Variances in BCG protection against COVID-19 mortality: A global assessment. J Clin Tuberc Other Mycobact Dis 2021;24:100249. https://doi.org/10.1016/j.jctube.2021.100249.
Toplam 105 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İdris Yazgan 0000-0002-0264-1253

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 2

Kaynak Göster

APA Yazgan, İ. (2021). mRNA SARS-CoV2 Specific and Childhood Vaccines against Covid-19 Pandemic. Türk Doğa Ve Fen Dergisi, 10(2), 338-350. https://doi.org/10.46810/tdfd.994622
AMA Yazgan İ. mRNA SARS-CoV2 Specific and Childhood Vaccines against Covid-19 Pandemic. TDFD. Aralık 2021;10(2):338-350. doi:10.46810/tdfd.994622
Chicago Yazgan, İdris. “MRNA SARS-CoV2 Specific and Childhood Vaccines Against Covid-19 Pandemic”. Türk Doğa Ve Fen Dergisi 10, sy. 2 (Aralık 2021): 338-50. https://doi.org/10.46810/tdfd.994622.
EndNote Yazgan İ (01 Aralık 2021) mRNA SARS-CoV2 Specific and Childhood Vaccines against Covid-19 Pandemic. Türk Doğa ve Fen Dergisi 10 2 338–350.
IEEE İ. Yazgan, “mRNA SARS-CoV2 Specific and Childhood Vaccines against Covid-19 Pandemic”, TDFD, c. 10, sy. 2, ss. 338–350, 2021, doi: 10.46810/tdfd.994622.
ISNAD Yazgan, İdris. “MRNA SARS-CoV2 Specific and Childhood Vaccines Against Covid-19 Pandemic”. Türk Doğa ve Fen Dergisi 10/2 (Aralık 2021), 338-350. https://doi.org/10.46810/tdfd.994622.
JAMA Yazgan İ. mRNA SARS-CoV2 Specific and Childhood Vaccines against Covid-19 Pandemic. TDFD. 2021;10:338–350.
MLA Yazgan, İdris. “MRNA SARS-CoV2 Specific and Childhood Vaccines Against Covid-19 Pandemic”. Türk Doğa Ve Fen Dergisi, c. 10, sy. 2, 2021, ss. 338-50, doi:10.46810/tdfd.994622.
Vancouver Yazgan İ. mRNA SARS-CoV2 Specific and Childhood Vaccines against Covid-19 Pandemic. TDFD. 2021;10(2):338-50.