Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 12 Sayı: 1, 44 - 52, 27.03.2023
https://doi.org/10.46810/tdfd.1219070

Öz

Kaynakça

  • Bednorz J G, Müller K.A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Physik B - Condensed Matter. 1986; 64: 189–193.
  • Bardeen J, Cooper L N., Schrieffer J R, Microscopic Theory of Superconductivity. Phys. Rev. 1957; 106: 162.
  • Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R. L., Gao L, Huang Z J, Wang Y Q, Chu C W, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987; 58: 908.
  • Maeda H, Tanaka Y., Fukutomi M, Asano T, Togano K, Kumakura H, Uehara M, Ikeda S, Ogawa K, Horiuchi S, Matsui Y, New high-Tc superconductors without rare earth element. Physica C 1988; 153–155: 602–607.
  • Sheng Z, Hermann A, Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system. Nature. 1988; 332, 138–139.
  • Ulgen A T, Yildirim G, Degradation in fundamental characteristic features of Bi-2212 superconducting ceramic material with Sr/Ti partial substitution. J Mater Sci: Mater Electron. 2019; 30: 8268–8277.
  • Biju A , Aloysius R P , Syamaprasad U, Enhanced critical current density in Gd-added (Bi, Pb)-2212 bulk superconductor. Supercond. Sci. Technol. 2005; 18:1454-1459.
  • Yildirim G, Determination of optimum diffusion annealing temperature for Au surface-layered Bi-2212 ceramics and dependence of transition temperatures on disorders, Journal of Alloys and Compounds. 2017; 699: 247-255.
  • Maeda H, Tanaka Y, Fukutomi M, Asano T, A New High-Tc Oxide Superconductor without a Rare Earth Element Jpn. J. Appl. Phys. 27, L209.
  • Biju A, Vinod K, Aloysius RP, Syamaprasad U, Improved superconducting properties by La addition in (Bi, Pb)-2212 bulk superconductor. J. Alloys Compd. 2007; 431: 49–55.
  • Özçelik B, Gündoğmuş H, Yazıcı D, Effect of (Ta/Nb) co-doping on the magnetoresistivity and flux pinning energy of the BPSCCO superconductors. J Mater Sci: Mater Electron. 2014; 25: 2456–2462.
  • Guner S B, Zalaoglu Y, Turgay T, Ozyurt O, Ulgen AT, Dogruer M, Yildirim G, A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features. Journal of Alloys and Compounds. 2019; 772: 388-398.
  • Sedky A, Al-Battat W, Effect of Y substitution at Ca site on structural and superconducting properties of Bi:2212 superconductor. Physica B: Condensed Matter. 2013; 410: 227-232.
  • Fallah-Arani H, Baghshahi S, Sedghi A, Stornaiuolo D, Tafuri F, Riahi-Noori N, Enhancement in superconducting properties of Bi2Sr2Ca1Cu2O8+θ (Bi-2212) by means of boron oxide additive. Physica C: Superconductivity and its Applications. 2018; 548: 31-39.
  • Ozabaci M, Sotelo A, Madre M.A, Yakinci M A, Effect of Fe Substitution for Cu on Microstructure and Magnetic Properties of Laser Floating Zone (LFZ) Grown Bi-2212 Rods. J Supercond Nov Magn 2013; 26: 1143–1149.
  • Lu T., Zhang C, Guo S, Wu Y, Li C, Zhou L, The influence of critical current density of Bi-2212 superconductors by defects after Yb-doping, Physica C: Superconductivity and its Applications, 2015; 519:24-27.
  • Türk N, Gündoğmuş H, Akyol M, Yakıncı Z D, Ekicibil A, Özçelik B, Effect of Tungsten (W) Substitution on the Physical Properties of Bi-(2223) Superconductors. J Supercond Nov Magn. 2014; 27: 711–716.
  • Hamadneh I, Halim S A. Lee, C K, Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy ceramic superconductor prepared via coprecipitation method at different sintering time. J Mater Sci. 2006; 41: 5526–5530.
  • Li D., Zhang H, Gao X, Yang S, Chen Q, Effect of the fabrication process on the electrical properties of polycrystalline Bi1.7Pb0.3Sr2Ca2Cu3O10. Ceramics International. (2016) 42(1): 1728-1732.
  • Gürsul M, Ekicibil A, Özçelik B, Sotelo A, Madre M A, Sintering Effects in Na-Substituted Bi-(2212) Superconductor Prepared by a Polymer Method. J Supercond Nov Magn 2015; 28: 1913–1924.
  • Yazici D, Erdem M, Ozcelik B, Improvement of the Intergranular Pinning Energy in the (BiPb)2Sr2Ca2Cu3O10+δ Superconductors Doped with High Valancy Cations. J Supercond Nov Magn. 2012; 25:725–729.
  • Trastoy J, Rouco V, Ulysse C, Bernard R, Faini G, Lesueur J, Briatico J, Villegas J E, Nanostructuring of high-TC superconductors via masked ion irradiation for efficient ordered vortex pinning. Physica C 2014; 506:195-200.
  • Boudjadja Y, Amira A, Saoudel A, Varilci A, Altintas S P, Terzioglu C, Structural and electrical properties of cerium doped Bi(Pb)-2212 phases. Physica B: Condensed Matter 2014; 443:130-135.
  • Wei W, Schwartz J, Goretta K C, Balachandran U, Bhargava A, Effects of nanosize MgO additions to bulk Bi2.1Sr1.7CaCu2Ox. Physica C: Superconductivity. 1998; 298(3-4): 279-288.
  • Aftabi A, Mozaffari M, Intergranular Coupling, Critical Current Density, and Phase Formation Enhancement of Polycrystalline Bi1.6Pb0.4Sr2Ca2Cu3O10−y Superconductors by α-Al2O3 Nanoparticle Addition. J Supercond Nov Magn. 2015; 28: 2337–2343.
  • Zouaoui M, Ghattas A, Annabi M, Azzouz F B, Salem, M B, Effect of nano-size ZrO2 addition on the flux pinning properties of (Bi, Pb)-2223 superconductor. Supercond. Sci. Technol. (2008); 21(12):125005.
  • Abd-Shukor R, Kong W, Magnetic field dependent critical current density of Bi–Sr–Ca–Cu–O superconductor in bulk and tape form with addition of Fe3O4 magnetic nanoparticles. J. Appl. Phys. 2009; 105: 07E311.
  • Kong W, Abd-Shukor R, Enhanced Electrical Transport Properties of Nano NiFe2O4-added (Bi1.6Pb0.4)Sr2Ca2Cu3O10 Superconductor. J Supercond Nov Magn. 2010; 23:257.
  • Liu Y, Mi C, Su L, Zhang X, Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries, Electrochimica Acta, 2008; 53(5): 2507-2513.
  • Younis A, Chu D, Lin X, Lee J, Li S, Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition. Nanoscale Res Lett. 2013; 8: 36.
  • Santra S, Wang K, Tapec R, Tan W, Development of novel dye-doped silica nanoparticles for biomarker application. J. Biomed. Opt. 2001.
  • Bindu Duvuru H, Alla S K, Shaw S K, Meena S S, Gupta N, Vara Prasad B.B.V.S., Kothawale M M, Kumar M K, Prasad N K, Magnetic and dielectric properties of Zn substituted cobalt oxide nanoparticles. Ceramics International. 2019; 45(13):16512-16520.
  • Wicaksono Y A, Puspitasari P, Pratama M M A., A. Permanasari A, Sukarni S, Synthesis and characterisation of cobalt oxide (Co3O4) using sol-gel auto combustion method with stirring time variations. AIP Conference Proceedings. 2022; 2489:030031.
  • Razavi F S, Sobhani A, Amiri O, Ghiyasiyan-Arani M, Salavati-Niasari M, Green sol-gel auto-combustion synthesis, characterization and investigation of the electrochemical hydrogen storage properties of barium cobalt oxide nanocomposites with maltose. International Journal of Hydrogen Energy. 2020; 45 (35): 17662-17670.
  • Cullity B D, Element of X-ray Diffraction (Addition-Wesley, Reading, 1978).
  • Dogruer M, Yildirim G, Terzioglu C, Evolution of electrical, superconducting, crystallinity and structural features with aliovalent Nd/Sr replacement in Bi-2223 ceramics. Materials Chemistry and Physics. 2022; 288: 126350.
  • Abrikosov A A, Gor'kov L P, Contribution to the theory of superconducting alloys with paramagnetic impurities. Zh. Eksp. Teor. Fiz. 1960; 39:1781–1796.
  • Zalaoglu Y, Yildirim G, Buyukuslu H, Saritekin N K, Varilci A, Terzioglu C, Gorur O, Important defeats on pinning of 2D pancake vortices in highly anisotropic Bi-2212 superconducting matrix with homovalent Bi/La substitution. Journal of Alloys and Compounds. 2015; 631: 111-119.
  • Nkum R K, Punnett A, Datars W R, Substitution of 3d metals for Cu in (Bi, Pb)2Sr2Ca2Cu3Oy. Physica C. 1992: 20; 371-378.
  • Maeda A, Yabe T, Takebayashi S, Hase M., Uchinokura K, Substitution of 3d metals for Cu in Bi2(Sr0.6Ca0.4)3Cu2Oy. Phys. Rev. B 1989; 41: 4112.
  • Singh S, Suppression of superconductivity in Sm and Co substituted Bi Sr Ca Cu O system. Physica C. 1998; 294: 249–256.
  • Jayaram B, Lanchester P C, Weller M T, Localization and interaction effects during superconductor-insulator transition of Bi2Sr2Ca1−xGdxCu2O8+d, Phys. Rev. B 1991; 43: 5444.
  • Yildirim G, Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles, Journal of Alloys and Compounds. 2013; 578: 526-535.
  • Bean C P, Magnetization of Hard Superconductors. Phys. Rev. Lett. 1962; 8: 250.
  • Gursul M, Ozcelik B, Liu M, Boltalin A I, Morozov I V, Structural and physical properties of Na-substituted K0.8Fe2-ySe2 single crystal. Journal of Alloys and Compounds, 2019; 777: 1074-1079.

Rapid Suppression of Superconductivity in Co3O4 nanoparticles-added Bi-2212 ceramics

Yıl 2023, Cilt: 12 Sayı: 1, 44 - 52, 27.03.2023
https://doi.org/10.46810/tdfd.1219070

Öz

Bu çalışma, sırasıyla x = 0, 0.5, 1 ve 2 için %x ağırlıkça Co3O4 nano parçacıklarıyla eklenmiş Bi-2212 seramiğindeki kristal kalitesi, faz bileşimleri, süperiletken özellikler ve çivileme kuvvetindeki dikkate değer değişimlerle ilgilidir. XRD analizi, Co3O4-içeriği XRD piklerinde genişlemeye, kristal kalitesinin düşmesine ve Bi-2212 miktarının azalmasına yol açtığı sonucuna varır. SEM'den Co3O4 ilavesiyle çubuksu yapıdan plakamsı yapıya doğru bir evrilme olduğu görülmektedir. Kritik geçiş sıcaklığı (Tc), M-T ölçümlerinden saf örnekte 82 K olarak bulunmuş ve 0.5% Co örneğinde 65 K’ye 1% Co örneğinde 42 K’ye kademeli olarak düştükten sonra süperiletkenlik 2% Co örneğinde kaybolmuştur. M-H ölçümlerinden, histerezis eğrilerinin Co3O4 eklenmesi ve sıcaklıkla birlikte daraldığı görülmektedir. Buna bağlı olarak, kritik akım yoğunlukları (Jc) ve çivileme kuvvetleri (Fp), Co3O4 içeriğindeki artışın neden olduğu süper iletken tanecikler arasındaki bağlantıdaki bozulmalar nedeniyle azalmıştır.

Kaynakça

  • Bednorz J G, Müller K.A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Physik B - Condensed Matter. 1986; 64: 189–193.
  • Bardeen J, Cooper L N., Schrieffer J R, Microscopic Theory of Superconductivity. Phys. Rev. 1957; 106: 162.
  • Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R. L., Gao L, Huang Z J, Wang Y Q, Chu C W, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987; 58: 908.
  • Maeda H, Tanaka Y., Fukutomi M, Asano T, Togano K, Kumakura H, Uehara M, Ikeda S, Ogawa K, Horiuchi S, Matsui Y, New high-Tc superconductors without rare earth element. Physica C 1988; 153–155: 602–607.
  • Sheng Z, Hermann A, Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system. Nature. 1988; 332, 138–139.
  • Ulgen A T, Yildirim G, Degradation in fundamental characteristic features of Bi-2212 superconducting ceramic material with Sr/Ti partial substitution. J Mater Sci: Mater Electron. 2019; 30: 8268–8277.
  • Biju A , Aloysius R P , Syamaprasad U, Enhanced critical current density in Gd-added (Bi, Pb)-2212 bulk superconductor. Supercond. Sci. Technol. 2005; 18:1454-1459.
  • Yildirim G, Determination of optimum diffusion annealing temperature for Au surface-layered Bi-2212 ceramics and dependence of transition temperatures on disorders, Journal of Alloys and Compounds. 2017; 699: 247-255.
  • Maeda H, Tanaka Y, Fukutomi M, Asano T, A New High-Tc Oxide Superconductor without a Rare Earth Element Jpn. J. Appl. Phys. 27, L209.
  • Biju A, Vinod K, Aloysius RP, Syamaprasad U, Improved superconducting properties by La addition in (Bi, Pb)-2212 bulk superconductor. J. Alloys Compd. 2007; 431: 49–55.
  • Özçelik B, Gündoğmuş H, Yazıcı D, Effect of (Ta/Nb) co-doping on the magnetoresistivity and flux pinning energy of the BPSCCO superconductors. J Mater Sci: Mater Electron. 2014; 25: 2456–2462.
  • Guner S B, Zalaoglu Y, Turgay T, Ozyurt O, Ulgen AT, Dogruer M, Yildirim G, A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features. Journal of Alloys and Compounds. 2019; 772: 388-398.
  • Sedky A, Al-Battat W, Effect of Y substitution at Ca site on structural and superconducting properties of Bi:2212 superconductor. Physica B: Condensed Matter. 2013; 410: 227-232.
  • Fallah-Arani H, Baghshahi S, Sedghi A, Stornaiuolo D, Tafuri F, Riahi-Noori N, Enhancement in superconducting properties of Bi2Sr2Ca1Cu2O8+θ (Bi-2212) by means of boron oxide additive. Physica C: Superconductivity and its Applications. 2018; 548: 31-39.
  • Ozabaci M, Sotelo A, Madre M.A, Yakinci M A, Effect of Fe Substitution for Cu on Microstructure and Magnetic Properties of Laser Floating Zone (LFZ) Grown Bi-2212 Rods. J Supercond Nov Magn 2013; 26: 1143–1149.
  • Lu T., Zhang C, Guo S, Wu Y, Li C, Zhou L, The influence of critical current density of Bi-2212 superconductors by defects after Yb-doping, Physica C: Superconductivity and its Applications, 2015; 519:24-27.
  • Türk N, Gündoğmuş H, Akyol M, Yakıncı Z D, Ekicibil A, Özçelik B, Effect of Tungsten (W) Substitution on the Physical Properties of Bi-(2223) Superconductors. J Supercond Nov Magn. 2014; 27: 711–716.
  • Hamadneh I, Halim S A. Lee, C K, Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy ceramic superconductor prepared via coprecipitation method at different sintering time. J Mater Sci. 2006; 41: 5526–5530.
  • Li D., Zhang H, Gao X, Yang S, Chen Q, Effect of the fabrication process on the electrical properties of polycrystalline Bi1.7Pb0.3Sr2Ca2Cu3O10. Ceramics International. (2016) 42(1): 1728-1732.
  • Gürsul M, Ekicibil A, Özçelik B, Sotelo A, Madre M A, Sintering Effects in Na-Substituted Bi-(2212) Superconductor Prepared by a Polymer Method. J Supercond Nov Magn 2015; 28: 1913–1924.
  • Yazici D, Erdem M, Ozcelik B, Improvement of the Intergranular Pinning Energy in the (BiPb)2Sr2Ca2Cu3O10+δ Superconductors Doped with High Valancy Cations. J Supercond Nov Magn. 2012; 25:725–729.
  • Trastoy J, Rouco V, Ulysse C, Bernard R, Faini G, Lesueur J, Briatico J, Villegas J E, Nanostructuring of high-TC superconductors via masked ion irradiation for efficient ordered vortex pinning. Physica C 2014; 506:195-200.
  • Boudjadja Y, Amira A, Saoudel A, Varilci A, Altintas S P, Terzioglu C, Structural and electrical properties of cerium doped Bi(Pb)-2212 phases. Physica B: Condensed Matter 2014; 443:130-135.
  • Wei W, Schwartz J, Goretta K C, Balachandran U, Bhargava A, Effects of nanosize MgO additions to bulk Bi2.1Sr1.7CaCu2Ox. Physica C: Superconductivity. 1998; 298(3-4): 279-288.
  • Aftabi A, Mozaffari M, Intergranular Coupling, Critical Current Density, and Phase Formation Enhancement of Polycrystalline Bi1.6Pb0.4Sr2Ca2Cu3O10−y Superconductors by α-Al2O3 Nanoparticle Addition. J Supercond Nov Magn. 2015; 28: 2337–2343.
  • Zouaoui M, Ghattas A, Annabi M, Azzouz F B, Salem, M B, Effect of nano-size ZrO2 addition on the flux pinning properties of (Bi, Pb)-2223 superconductor. Supercond. Sci. Technol. (2008); 21(12):125005.
  • Abd-Shukor R, Kong W, Magnetic field dependent critical current density of Bi–Sr–Ca–Cu–O superconductor in bulk and tape form with addition of Fe3O4 magnetic nanoparticles. J. Appl. Phys. 2009; 105: 07E311.
  • Kong W, Abd-Shukor R, Enhanced Electrical Transport Properties of Nano NiFe2O4-added (Bi1.6Pb0.4)Sr2Ca2Cu3O10 Superconductor. J Supercond Nov Magn. 2010; 23:257.
  • Liu Y, Mi C, Su L, Zhang X, Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries, Electrochimica Acta, 2008; 53(5): 2507-2513.
  • Younis A, Chu D, Lin X, Lee J, Li S, Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition. Nanoscale Res Lett. 2013; 8: 36.
  • Santra S, Wang K, Tapec R, Tan W, Development of novel dye-doped silica nanoparticles for biomarker application. J. Biomed. Opt. 2001.
  • Bindu Duvuru H, Alla S K, Shaw S K, Meena S S, Gupta N, Vara Prasad B.B.V.S., Kothawale M M, Kumar M K, Prasad N K, Magnetic and dielectric properties of Zn substituted cobalt oxide nanoparticles. Ceramics International. 2019; 45(13):16512-16520.
  • Wicaksono Y A, Puspitasari P, Pratama M M A., A. Permanasari A, Sukarni S, Synthesis and characterisation of cobalt oxide (Co3O4) using sol-gel auto combustion method with stirring time variations. AIP Conference Proceedings. 2022; 2489:030031.
  • Razavi F S, Sobhani A, Amiri O, Ghiyasiyan-Arani M, Salavati-Niasari M, Green sol-gel auto-combustion synthesis, characterization and investigation of the electrochemical hydrogen storage properties of barium cobalt oxide nanocomposites with maltose. International Journal of Hydrogen Energy. 2020; 45 (35): 17662-17670.
  • Cullity B D, Element of X-ray Diffraction (Addition-Wesley, Reading, 1978).
  • Dogruer M, Yildirim G, Terzioglu C, Evolution of electrical, superconducting, crystallinity and structural features with aliovalent Nd/Sr replacement in Bi-2223 ceramics. Materials Chemistry and Physics. 2022; 288: 126350.
  • Abrikosov A A, Gor'kov L P, Contribution to the theory of superconducting alloys with paramagnetic impurities. Zh. Eksp. Teor. Fiz. 1960; 39:1781–1796.
  • Zalaoglu Y, Yildirim G, Buyukuslu H, Saritekin N K, Varilci A, Terzioglu C, Gorur O, Important defeats on pinning of 2D pancake vortices in highly anisotropic Bi-2212 superconducting matrix with homovalent Bi/La substitution. Journal of Alloys and Compounds. 2015; 631: 111-119.
  • Nkum R K, Punnett A, Datars W R, Substitution of 3d metals for Cu in (Bi, Pb)2Sr2Ca2Cu3Oy. Physica C. 1992: 20; 371-378.
  • Maeda A, Yabe T, Takebayashi S, Hase M., Uchinokura K, Substitution of 3d metals for Cu in Bi2(Sr0.6Ca0.4)3Cu2Oy. Phys. Rev. B 1989; 41: 4112.
  • Singh S, Suppression of superconductivity in Sm and Co substituted Bi Sr Ca Cu O system. Physica C. 1998; 294: 249–256.
  • Jayaram B, Lanchester P C, Weller M T, Localization and interaction effects during superconductor-insulator transition of Bi2Sr2Ca1−xGdxCu2O8+d, Phys. Rev. B 1991; 43: 5444.
  • Yildirim G, Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles, Journal of Alloys and Compounds. 2013; 578: 526-535.
  • Bean C P, Magnetization of Hard Superconductors. Phys. Rev. Lett. 1962; 8: 250.
  • Gursul M, Ozcelik B, Liu M, Boltalin A I, Morozov I V, Structural and physical properties of Na-substituted K0.8Fe2-ySe2 single crystal. Journal of Alloys and Compounds, 2019; 777: 1074-1079.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Mehmet Gürsul 0000-0002-3025-2183

Yayımlanma Tarihi 27 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 1

Kaynak Göster

APA Gürsul, M. (2023). Rapid Suppression of Superconductivity in Co3O4 nanoparticles-added Bi-2212 ceramics. Türk Doğa Ve Fen Dergisi, 12(1), 44-52. https://doi.org/10.46810/tdfd.1219070
AMA Gürsul M. Rapid Suppression of Superconductivity in Co3O4 nanoparticles-added Bi-2212 ceramics. TDFD. Mart 2023;12(1):44-52. doi:10.46810/tdfd.1219070
Chicago Gürsul, Mehmet. “Rapid Suppression of Superconductivity in Co3O4 Nanoparticles-Added Bi-2212 Ceramics”. Türk Doğa Ve Fen Dergisi 12, sy. 1 (Mart 2023): 44-52. https://doi.org/10.46810/tdfd.1219070.
EndNote Gürsul M (01 Mart 2023) Rapid Suppression of Superconductivity in Co3O4 nanoparticles-added Bi-2212 ceramics. Türk Doğa ve Fen Dergisi 12 1 44–52.
IEEE M. Gürsul, “Rapid Suppression of Superconductivity in Co3O4 nanoparticles-added Bi-2212 ceramics”, TDFD, c. 12, sy. 1, ss. 44–52, 2023, doi: 10.46810/tdfd.1219070.
ISNAD Gürsul, Mehmet. “Rapid Suppression of Superconductivity in Co3O4 Nanoparticles-Added Bi-2212 Ceramics”. Türk Doğa ve Fen Dergisi 12/1 (Mart 2023), 44-52. https://doi.org/10.46810/tdfd.1219070.
JAMA Gürsul M. Rapid Suppression of Superconductivity in Co3O4 nanoparticles-added Bi-2212 ceramics. TDFD. 2023;12:44–52.
MLA Gürsul, Mehmet. “Rapid Suppression of Superconductivity in Co3O4 Nanoparticles-Added Bi-2212 Ceramics”. Türk Doğa Ve Fen Dergisi, c. 12, sy. 1, 2023, ss. 44-52, doi:10.46810/tdfd.1219070.
Vancouver Gürsul M. Rapid Suppression of Superconductivity in Co3O4 nanoparticles-added Bi-2212 ceramics. TDFD. 2023;12(1):44-52.