Yıl 2024,
Cilt: 13 Sayı: 3, 92 - 98, 26.09.2024
İbrahim Bayav
,
Adnan Ayna
,
Sevda Sağ
,
Muhammet Veysel Nazlı
,
Faruk Altınbaşak
,
İlay Boz
,
Ekrem Darendelioğlu
Kaynakça
- Maris J M. Recent advances in neuroblastoma. The New England journal of medicine. 2010;362 (23): 2202-2211.
- Ricciardi V, Portaccio M, Piccolella S, Manti L, Pacifico S, Lepore M. Study of SH-SY5Y cancer cell response to treatment with polyphenol extracts using FT-IR spectroscopy. Biosensors. 2017;7(4): 57.
- Kreissman S G, Villablanca J G, Diller L, London W B, Maris J M, Park J R. Response and toxicity to a dose-intensive multi-agent chemotherapy induction regimen for high risk neuroblastoma (HR-NB): a Children's Oncology Group (COG A3973) study. J Clin Oncol Res. 2007; 25(18): 9505-9505.
- Jiang M, Stanke J, Lahti J M. The connections between neural crest development and neuroblastoma. In Current topics in developmental biology. Academic Press. 2011; 94: 77-127.
- Fratianni F, Ombra M N, d'Acierno A, Cipriano L, and Nazzaro F. Apricots: biochemistry and functional properties. Current Opinion in Food Science. 2018; 19: 23-29.
- Alexa E, Lalescu D, Berbecea A, Camen D, Poiana M A, Moigradean D, & Bala M. Chemical composition and antioxidant activity of some apricot varieties at different ripening stages. Chilean journal of agricultural research. 2018; 78(2): 266-275.
- Naryal A, Bhardwaj P, Kant A, Chaurasia O P, Stobdan T. Altitude and seed phenotypic effect on amygdalin content in Apricot (Prunus armeniaca L.) kernel. Pharmacognosy Journal. 2019;11(2).
- Gupta S, Chhajed M, Arora S, Thakur G, Gupta R. Medicinal value of Apricot: A Review. Indian Journal of Pharmaceutical Sciences, Sci.2018;80(5): 790-794.
- Dang T, Nguyen C, Tran P N. Physician beware: severe cyanide toxicity from amygdalin tablets ingestion. Case Reports in Emergency Medicine. 2017.
- Chen B, Zhang Y, Yang Y, Chen S, Xu A, Wu L et al. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine. 2018;13(16): 2067-2082.
- Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustainable Chemistry and Pharmacy, 2018; 10:9-15.
- Buttacavoli M, Albanese N N, Di Cara G, Alduina R, Faleri C, Gallo M et al. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018;9(11): 9685.
- Abràmoff M D, Magalhães P J, Ram S J. Image processing with ImageJ. Biophotonics, 2004;11(7): 36-42.
- Waetzig V, Haeusgen W, Andres C, Frehse S, Reinecke K, Bruckmueller H et al. I. Retinoic acid–induced survival effects in SH‐SY5Y neuroblastoma cells. Journal of Cellular Biochemistry. 2019;120(4): 5974-5986.
- Hacıseferoğulları H, Gezer I, Özcan M M, Murat Asma B. Post-harvest chemical and physical–mechanical properties of some apricot varieties cultivated in Turkey. Journal of Food Engineering. 2007;79(1): 364-373.
- Alpaslan M, Hayta M. Apricot kernel: Physical and chemical properties. Journal of The American Oil Chemists Society. 2006;83(5): 469-471.
- Gurunathan S, Jeyaraj M, Kang M H, & Kim J H. Mitochondrial peptide humanin protects silver nanoparticles-induced neurotoxicity in human neuroblastoma cancer cells (SH-SY5Y). International journal of molecular sciences. 2019; 20(18): 4439.
- Sreekanth T V M, Nagajyothi P C, Supraja N, Prasad T N V K V. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles. Applied Nanoscience. 2015; 5(5): 595-602.
- Grace A N, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;297(1-3): 63-70.
- Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Advanced healthcare materials. 2018; 7(13): 1701503.
- González-Fernández S, Lozano-Iturbe V, García B, Andrés LJ, Menéndez MF, Rodrígue, D, et al. Antibacterial effect of silver nanorings. BMC microbiology. 2020; 20:1-14.
- Liu J, Sonshine D A, Shervani S, Hurt R H. Controlled release of biologically active silver from nanosilver surfaces. American Chemical Society Applied Nano Materials. 2010;4(11): 6903-6913.
- Barros D, Pradhan A, Mendes VM, Manadas B, Santos PM, Pascoal C, Cássio F. Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. Environmental Science. Nano. 2019;6(4):1207-1218.
- Bindhu M R, Umadevi M. Antibacterial activities of green synthesized gold nanoparticles. American Chemical Society Matterials Letters. 2014;120: 122-125.
- González-Fernández, S., Lozano-Iturbe, V., García, B., Andrés, L. J., Menéndez, M. F., Rodríguez, D., ... & Quirós, L. M. (2020). Antibacterial effect of silver nanorings. BMC microbiology, 20, 1-14.
- Khina AG, Krutyakov YA. Similarities and differences in the mechanism of antibacterial action of silver ions and nanoparticles. Applied Biochemistry and Microbiology. 2021; 57:683- 693.
- Arasu M V, Arokiyaraj S, Viayaraghavan P, Kumar T S J, Duraipandiyan V, Al-Dhabi N A et al. One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. Journal of Photochemistry and Photobiology B: Biology. 2019;190: 154-162.
- Silveira A P, Bonatto C C, Lopes C A P, Rivera L M R, Silva L P. Physicochemical characteristics and antibacterial effects of silver nanoparticles produced using the aqueous extract of Ilex paraguariensis. Materials Chemistry and Physics. 2018;216: 476-484.
- Mukha I P, Eremenko A M, Smirnova N P, Mikhienkova A I, Korchak G I, Gorchev V F et al.Antimicrobial activity of stable silver nanoparticles of a certain size. Applied Biochemistry and Microbiology. 2013;49(2): 199-206.
- Vadakkan K, Rumjit N P, Ngangbam A K, Vijayanand S, Nedumpillil N K. Novel advancements in the sustainable green synthesis approach of silver nanoparticles (AgNPs) for antibacterial therapeutic applications. Coordination Chemistry Reviews, 2024; 499: 215528.
- Saied M, Ward A, Hamieda S F. Effect of apricot kernel seed extract on biophysical properties of chitosan film for packaging applications. Scientific Reports. 2024; 14(1): 3430.
Green Synthesis of Apricot Kernel Silver Nanoparticles and Their Biological Activity
Yıl 2024,
Cilt: 13 Sayı: 3, 92 - 98, 26.09.2024
İbrahim Bayav
,
Adnan Ayna
,
Sevda Sağ
,
Muhammet Veysel Nazlı
,
Faruk Altınbaşak
,
İlay Boz
,
Ekrem Darendelioğlu
Öz
Silver nanoparticles (AgNPs) have been shown to have high conductivity, chemical stability, catalytic and antibacterial activities, as well as cytotoxicity on various cancer cells. Many biological resources, including plants, fungi, and bacteria have been utilised for the synthesis of silver, gold and other nanoparticles. The aim of this study was to synthesise environmentally friendly and cost-effective AgNPs from apricot kernel and investigate their antimicrobial activities and cytotoxicity. The synthesized AgNPs were characterized by UV-vis, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and FTIR. UV–vis spectra revealed the surface plasmon resonance peak at 420 nm confirming the formation of apricot kernel silver nanoparticles. FTIR spectra further demonstrated the involvement of biological compounds in synthesis of AgNPs. Synthesized AgNPs was also found to inhibit the growth of gram negative and gram positive bacteria such as Enterobacter aerogenes ccm 2531, Bacillus subtilis IM 622, Staphylococcus Aureus 6538 p., Staphylococcus Aureus ATCC 29213 and Listeria monocytogenes NCTL 5348 on solid nutrient medium. Importantly, AgNPs were also found to decrease the cell viability of SHSY5Y cell lines in vitro suggesting it could be used as a controlling agent of human neuroblastoma cancer. Based on the findings, it could be concluded that environmentally friendly synthesized AgNPs shows multifunctional properties and could be used against cancer and other infectious diseases.
Kaynakça
- Maris J M. Recent advances in neuroblastoma. The New England journal of medicine. 2010;362 (23): 2202-2211.
- Ricciardi V, Portaccio M, Piccolella S, Manti L, Pacifico S, Lepore M. Study of SH-SY5Y cancer cell response to treatment with polyphenol extracts using FT-IR spectroscopy. Biosensors. 2017;7(4): 57.
- Kreissman S G, Villablanca J G, Diller L, London W B, Maris J M, Park J R. Response and toxicity to a dose-intensive multi-agent chemotherapy induction regimen for high risk neuroblastoma (HR-NB): a Children's Oncology Group (COG A3973) study. J Clin Oncol Res. 2007; 25(18): 9505-9505.
- Jiang M, Stanke J, Lahti J M. The connections between neural crest development and neuroblastoma. In Current topics in developmental biology. Academic Press. 2011; 94: 77-127.
- Fratianni F, Ombra M N, d'Acierno A, Cipriano L, and Nazzaro F. Apricots: biochemistry and functional properties. Current Opinion in Food Science. 2018; 19: 23-29.
- Alexa E, Lalescu D, Berbecea A, Camen D, Poiana M A, Moigradean D, & Bala M. Chemical composition and antioxidant activity of some apricot varieties at different ripening stages. Chilean journal of agricultural research. 2018; 78(2): 266-275.
- Naryal A, Bhardwaj P, Kant A, Chaurasia O P, Stobdan T. Altitude and seed phenotypic effect on amygdalin content in Apricot (Prunus armeniaca L.) kernel. Pharmacognosy Journal. 2019;11(2).
- Gupta S, Chhajed M, Arora S, Thakur G, Gupta R. Medicinal value of Apricot: A Review. Indian Journal of Pharmaceutical Sciences, Sci.2018;80(5): 790-794.
- Dang T, Nguyen C, Tran P N. Physician beware: severe cyanide toxicity from amygdalin tablets ingestion. Case Reports in Emergency Medicine. 2017.
- Chen B, Zhang Y, Yang Y, Chen S, Xu A, Wu L et al. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine. 2018;13(16): 2067-2082.
- Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustainable Chemistry and Pharmacy, 2018; 10:9-15.
- Buttacavoli M, Albanese N N, Di Cara G, Alduina R, Faleri C, Gallo M et al. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018;9(11): 9685.
- Abràmoff M D, Magalhães P J, Ram S J. Image processing with ImageJ. Biophotonics, 2004;11(7): 36-42.
- Waetzig V, Haeusgen W, Andres C, Frehse S, Reinecke K, Bruckmueller H et al. I. Retinoic acid–induced survival effects in SH‐SY5Y neuroblastoma cells. Journal of Cellular Biochemistry. 2019;120(4): 5974-5986.
- Hacıseferoğulları H, Gezer I, Özcan M M, Murat Asma B. Post-harvest chemical and physical–mechanical properties of some apricot varieties cultivated in Turkey. Journal of Food Engineering. 2007;79(1): 364-373.
- Alpaslan M, Hayta M. Apricot kernel: Physical and chemical properties. Journal of The American Oil Chemists Society. 2006;83(5): 469-471.
- Gurunathan S, Jeyaraj M, Kang M H, & Kim J H. Mitochondrial peptide humanin protects silver nanoparticles-induced neurotoxicity in human neuroblastoma cancer cells (SH-SY5Y). International journal of molecular sciences. 2019; 20(18): 4439.
- Sreekanth T V M, Nagajyothi P C, Supraja N, Prasad T N V K V. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles. Applied Nanoscience. 2015; 5(5): 595-602.
- Grace A N, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;297(1-3): 63-70.
- Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Advanced healthcare materials. 2018; 7(13): 1701503.
- González-Fernández S, Lozano-Iturbe V, García B, Andrés LJ, Menéndez MF, Rodrígue, D, et al. Antibacterial effect of silver nanorings. BMC microbiology. 2020; 20:1-14.
- Liu J, Sonshine D A, Shervani S, Hurt R H. Controlled release of biologically active silver from nanosilver surfaces. American Chemical Society Applied Nano Materials. 2010;4(11): 6903-6913.
- Barros D, Pradhan A, Mendes VM, Manadas B, Santos PM, Pascoal C, Cássio F. Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. Environmental Science. Nano. 2019;6(4):1207-1218.
- Bindhu M R, Umadevi M. Antibacterial activities of green synthesized gold nanoparticles. American Chemical Society Matterials Letters. 2014;120: 122-125.
- González-Fernández, S., Lozano-Iturbe, V., García, B., Andrés, L. J., Menéndez, M. F., Rodríguez, D., ... & Quirós, L. M. (2020). Antibacterial effect of silver nanorings. BMC microbiology, 20, 1-14.
- Khina AG, Krutyakov YA. Similarities and differences in the mechanism of antibacterial action of silver ions and nanoparticles. Applied Biochemistry and Microbiology. 2021; 57:683- 693.
- Arasu M V, Arokiyaraj S, Viayaraghavan P, Kumar T S J, Duraipandiyan V, Al-Dhabi N A et al. One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. Journal of Photochemistry and Photobiology B: Biology. 2019;190: 154-162.
- Silveira A P, Bonatto C C, Lopes C A P, Rivera L M R, Silva L P. Physicochemical characteristics and antibacterial effects of silver nanoparticles produced using the aqueous extract of Ilex paraguariensis. Materials Chemistry and Physics. 2018;216: 476-484.
- Mukha I P, Eremenko A M, Smirnova N P, Mikhienkova A I, Korchak G I, Gorchev V F et al.Antimicrobial activity of stable silver nanoparticles of a certain size. Applied Biochemistry and Microbiology. 2013;49(2): 199-206.
- Vadakkan K, Rumjit N P, Ngangbam A K, Vijayanand S, Nedumpillil N K. Novel advancements in the sustainable green synthesis approach of silver nanoparticles (AgNPs) for antibacterial therapeutic applications. Coordination Chemistry Reviews, 2024; 499: 215528.
- Saied M, Ward A, Hamieda S F. Effect of apricot kernel seed extract on biophysical properties of chitosan film for packaging applications. Scientific Reports. 2024; 14(1): 3430.