Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 13 Sayı: 4, 85 - 90, 30.12.2024
https://doi.org/10.46810/tdfd.1521872

Öz

Kaynakça

  • Begeç S. Synthesis and characterization of new spiro cyclotriphosphazene derivatives. Inorganic Chemistry Communications. 2022;140;109457.
  • Bilge S, Demiriz S, Okumus A, Kilic Z, Tercan B, Hokelek T, Buyukgungor O.Phosphorus−Nitrogen Compounds. Part 13. Syntheses, Crystal Structures, Spectroscopic, Stereogenic, and Anisochronic Properties of Novel Spiro-Ansa-Spiro-, Spiro-Bino-Spiro-, and Spiro- Crypta Phosphazene Derivatives. Inorganic Chemistry. 2006;45(21):8755-8767.
  • Tümer Y. Synthesis, structural, and stereogenic characterizations of new trispirocyclotriphosphazenes. Journal of the Chinese Chemical Society. 2022;69(11):1897-1907.
  • Yenilmez Çiftçi G, Şenkuytu E, Yuksel F, Kılıç A. Investigation of the structural properties of 2-naphthylamine substituted cyclotetraphosphazenes. Polyhedron. 2014;77:1-9.
  • Görgülü AO, Koran K, Özen F, Tekin S, Sandal S. Synthesis, structural characterization and anti-carcinogenic activity of new cyclotriphosphazenes containing dioxybiphenyl and chalcone groups, Journal of Molecular Structure. 2015; 1087 (5): 1-10. Ibişoğlu H, Erdemir E, Atilla D, Şahin Ün Ş, Topçu, S, Şeker MG. Synthesis, characterization and antimicrobial properties of cyclotriphosphazenes bearing benzimidazolyl rings. Inorganica Chimica Acta. 2020; 509(1): 119679.
  • Karthikeyan S, Krishnamurty SS. Reaction of Hexachlorocyclotriphosphazene with Sodiump-Cresoxide. Zeitschrift für Anorganische und Allgemeine Chemie. 1984;513(6):231-240.
  • Kumar D, Fohlen GM, Parker, JA. Bis‐, tris‐, and tetrakis‐maleimido phenoxy‐triphenoxy cyclotriphosphazene resins for fire‐ and heat‐resistant applications. Journal of Polymer Science: Polymer Chemistry Edition. 1983; 21(11):3155-3167.
  • Kumaraswamy S, Vijjulatha M, Muthiah C, Kumara Swamy KC, Engelhardt U. Synthesis, reactivity and structures of spirocyclic products derived from octachlorocyclotetraphosphazene: comparison with spirocyclic cyclotriphosphazenes and linear phosphazenes. Journal of the Chemical Society, Dalton transactions. 1999;6:891-900.
  • Li X, Jiang F, Chen L, Wu M, Chen Q, Bu Y, Hong M. Three novel 3D coordination polymers based on a flexible multisite cyclotetraphosphazene ligand. Dalton Transactions. 2012;41:14038-14041.
  • Ture S, Darcan C, Türkyılmaz O, Kaygusuz Ö. Synthesis, structural characterization and antimicrobial activities of cyclochlorotriphosphazene derivatives derived from N-(1-Naphthyl)- ethylenediamine. Phosphorus, Sulfur, and Silicon and the Related-Elements. 2020; 195(6): 507-515.
  • Akbas H, Okumus A, Kılıç Z, Hökelek T, Süzen Y, Koç ZB, et al. Phosphorus–nitrogen compounds part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups. European Journal of Medicinal Chemistry. 2013;70:294–307.
  • Yenilmez Çiftçi G, Tanrıverdi Eçik E, Yıldırım T, Bilgin K, Şenkuytu K, Yuksel F, et al. Synthesis and characterization of new cyclotriphosphazene compounds. Tetrahedron. 2013;69(5):1454–1461.
  • Eker Y, Şenkuytu E, Ölçer Z, Yıldırım T, Yenilmez Çiftçi G. Novel coumarin cyclotriphosphazene derivatives: Synthesis, characterization, DNA binding analysis with automated biosensor and cytotoxicity. Journal of Molecular Structure . 2020; 1209; 127971.
  • Yıldırım T, Bilgin K, Yenilmez Çiftçi G, Tanrıverdi Eçik E, Şenkuytu E, Uludağ Y, et al. Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti- cancer agents. European Journal of Medicinal Chemistry. 2012; 52: 213–220.
  • Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici B, Şimşek H, et al. Phosphorus–nitrogen compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, and antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes. New Journal of Chemistry. 40, 5588-5603.
  • Brandt K, Kruszynski R, Bartczak TJ, Czomperlik IP. AIDS-related lymphoma screen results and molecular structure determination of a new crown ether bearing aziridinylcyclophosphazene, potentially capable of ion-regulated DNA cleavage action. Inorganica Chimica Acta. 2001; 322: 138-144.
  • Song SC, Lee SB, Lee BH, Ha HW, Lee KT, Sohn, YS. Synthesis and antitumor activity of novel thermosensitive platinum(II)-cyclotriphosphazene conjugates, Journal of Controlled Release. 2003;90(3):303-311.
  • Barbera J, Bardaj M, Jimnez J, Laguna A, Martnez J, Serrano L, et al. Columnar mesomorphic organizations in cyclotriphosphazenes. Journal of the American Chemical Society. 2005;127(5):8994-9002.
  • Davarcı D, Beşli S, Demirbaş E. Synthesis of a series of triple-bridged cyclotriphosphazene hexa-alkoxy derivatives and investigation of their structural and mesomorphic properties. Liquid Crystals. 2013;40(5):624-631.
  • He Q, Dai H, Tan X, Cheng X, Liu F, Tschierske C. Synthesis and characterization of room temperature columnar mesogens of cyclotriphosphazene with shiff base units. Journal of Materials Chemistry C. 2013;1(43): 7148-7154.
  • Moriya K, Suzuki T, Yano S, Miyajima S. 31P and 13C NMR studies of a liquide crystallinecyclotriphosphazene derivative: orientational characteristics and contrasting shielding anisotropies for inorganic and organic moieties. The Journal of Physical Chemistry B. 2001; 105 (33): 7920-7927.
  • Schrögel P, Hoping M, Kowalsky W, Hunze A. Wagenblast G. Wagenblast C. Phosphazene-Based Host Materials for the Use in Blue Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials. 2011;23 (22): 4947-4953.
  • Jian S, Xiaodong W, Dezhen W. Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics. ACS Applied Materials & Interfaces. 2012;4 (8):4047-4061.
  • Sun J, Yu Z, Wang X, Wu D. Synthesis and Performance of CyclomatrixPolyphosphazene Derived from Trispiro-Cyclotriphosphazene as a Halogen-Free Nonflammable Material, ACS Sustainable Chemistry & Engineering. 2014;2(2): 231-238.
  • Inoue K, Yamauchi T, Itoh T, Ihara E. Ionic Conductivity of Cross-linked Polymethacrylate Derivatives/Cyclophosphazenes/Li+ Salt Complexes. Journal of Inorganic and Organometallic Polymers and Materials. 2007; 17(2): 367-375.
  • Yenilmez Çiftçi G, Yılmaz S, Bayık N, Şenkuytu E, Kaya EN, Durmuş M, Bulut M. Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes. Turkish Journal of Chemistry, 2020; 44(1): 64-73.
  • Şenkuytu, E. A high selective “Turn-Off” aminopyrene based cyclotriphosphazene fluorescent chemosensors for Fe3+/Cu2+ ions. Inorganica Chimica Acta. 2018; 479(1): 58-65.
  • Dell D, Fitzsimmons BW, Shaw R A. Phosphorus-nitrogen compounds. Part XIII. Phenoxy- and p-bromophenoxy-chlorocyclotriphosphazatrienes. Journal of the Chemical Society. (1965); 752: 4070-4073.
  • Allcock HR, Dembek AA, Mang MN, Riding GH, Parvez M, Visscher KB. Synthesis and structure of small-molecule cyclic phosphazenes bearing ortho-substituted aryloxy and phenoxy substituents. Inorganic Chemistry, 1992;31(13): 2734-2739.
  • Abou-Donia, M. B. (2008). Organophosphorus Ester-Induced Chronic Neurotoxicity, Archives of Environmental & Occupational Health, 2003;58 (8): 484-497.
  • Rojo G, Agulló-López F, Carriedo G. A. , GarcíA Alonso F. J. , Fidalgo Martinez J. I, Nonlinear optical properties of high glass-transition temperature polyphosphazene, Synthetic Metals, 2000; 115: 241-244.
  • Çoşut B, Topaloğlu Aksoy B, Tümay S. O, Şenocak A, Yeşilot S, , Synthesis, optical, and structural properties of bisphenol-bridged aromatic cyclic phosphazenes, Turkish Journal of Chemistry, 2020; 44 (1): 48-63.
  • Mu X, Yuan B, Hu, W, Qiu S, Lei Song L. Hu Y, Flame retardant and anti-dripping properties of polylactic acid/poly(bis(phenoxy)phosphazene)/expandable graphite composite and its flame retardant mechanism, 2015; 93(5): 760-68-760-78.
  • Cui Y, Ma X, Tang X, Luo Y. Synthesis, characterization, and thermal stability of star-shaped poly(e-caprolactone) with phosphazene core, European Polymer Journal, 2004; 40(2) 299-305.
  • Nonhebel, D. C., J. M. Tedder, J. M., & J. C. Walton, J. C. (1979). Cambridge Radicals (Cambridge: Cambridge University Press).
  • Denisov, E. (1995), Handbook of Antioxidants (Boca Raton, FL: CRC Press).
  • Kılıc A, Begec S, Çetinkaya B, Hökelek T, Kılıc Z, Gündüz N. et al. Unusual Products in the Reactions of Hexachlorocyclotriphosphazatriene with Sodium Aryloxides. Heteroatom Chemistry, 1996; 7(4) 249-256.
  • Hökelek T, Kılıc A, Begeç S, Kılıc Z, Yıldız M. 2-(2,6-Di-tert-butyl-4-methylphenoxy)-2,4,4,6,6,8,8-heptachlorocyclo-2λ5,4λ5,6λ5,8λ5-tetraphosphazatetraene. Acta Crystallographica Section C: Crystal Structure Communications. 1996; C52: 3243-3246.
  • Hökelek T, Kılıc A, Begeç S, Kılıc Z. 2,4,4,6,6-Pentachloro-2-(2,6-di-tert-butyl-4- methylphenoxy)cyclo-2λ5,4λ5,6λ5-triphosphazatriene. Acta Crystallographica Section C: Crystal Structure Communications, 1999;C55: 783-785.
  • Hökelek T, Akduran N, Kılıc A, Begeç S, Kılıc, Z. Crystal Structure of 2,4,4,6,6-Pentachloro-2-(2,4,6-trimethylphenoxy)cyclo-2λ5,4λ5,6λ5-triphosphazatriene, Analytical Sciences. 2000;16: 101-102.
  • Begeç S, Kılıç A. Phenolysis of Hexachlorocyclotriphosphazatriene,. Heteroatom Chemistry. 2005;16(4):308-310.

Synthesis and characterization of 2,4-di-methyl-, and 3,4-di-methyl-phenol derivatives of hexachlorocyclotriphosphazatriene

Yıl 2024, Cilt: 13 Sayı: 4, 85 - 90, 30.12.2024
https://doi.org/10.46810/tdfd.1521872

Öz

In this study, the reactions of hexachlorocyclotriphosphazatriene N3P3Cl6 (1) with the sodium salts of 2, 4-di-methyl-phenol (2a) and 3, 4- di-methyl-phenol (2b) have been investigated. Mono phenoxy-substituted phosphazene compounds N3P3Cl5OC6H3-Me-2, 4 (3) and N3P3Cl5OC6H3-Me-3, 4 (4) were obtained from these reactions. The structures of these compounds were characterized by 1H, 13C, 31P NMR spectroscopy and elemental analyses.

Kaynakça

  • Begeç S. Synthesis and characterization of new spiro cyclotriphosphazene derivatives. Inorganic Chemistry Communications. 2022;140;109457.
  • Bilge S, Demiriz S, Okumus A, Kilic Z, Tercan B, Hokelek T, Buyukgungor O.Phosphorus−Nitrogen Compounds. Part 13. Syntheses, Crystal Structures, Spectroscopic, Stereogenic, and Anisochronic Properties of Novel Spiro-Ansa-Spiro-, Spiro-Bino-Spiro-, and Spiro- Crypta Phosphazene Derivatives. Inorganic Chemistry. 2006;45(21):8755-8767.
  • Tümer Y. Synthesis, structural, and stereogenic characterizations of new trispirocyclotriphosphazenes. Journal of the Chinese Chemical Society. 2022;69(11):1897-1907.
  • Yenilmez Çiftçi G, Şenkuytu E, Yuksel F, Kılıç A. Investigation of the structural properties of 2-naphthylamine substituted cyclotetraphosphazenes. Polyhedron. 2014;77:1-9.
  • Görgülü AO, Koran K, Özen F, Tekin S, Sandal S. Synthesis, structural characterization and anti-carcinogenic activity of new cyclotriphosphazenes containing dioxybiphenyl and chalcone groups, Journal of Molecular Structure. 2015; 1087 (5): 1-10. Ibişoğlu H, Erdemir E, Atilla D, Şahin Ün Ş, Topçu, S, Şeker MG. Synthesis, characterization and antimicrobial properties of cyclotriphosphazenes bearing benzimidazolyl rings. Inorganica Chimica Acta. 2020; 509(1): 119679.
  • Karthikeyan S, Krishnamurty SS. Reaction of Hexachlorocyclotriphosphazene with Sodiump-Cresoxide. Zeitschrift für Anorganische und Allgemeine Chemie. 1984;513(6):231-240.
  • Kumar D, Fohlen GM, Parker, JA. Bis‐, tris‐, and tetrakis‐maleimido phenoxy‐triphenoxy cyclotriphosphazene resins for fire‐ and heat‐resistant applications. Journal of Polymer Science: Polymer Chemistry Edition. 1983; 21(11):3155-3167.
  • Kumaraswamy S, Vijjulatha M, Muthiah C, Kumara Swamy KC, Engelhardt U. Synthesis, reactivity and structures of spirocyclic products derived from octachlorocyclotetraphosphazene: comparison with spirocyclic cyclotriphosphazenes and linear phosphazenes. Journal of the Chemical Society, Dalton transactions. 1999;6:891-900.
  • Li X, Jiang F, Chen L, Wu M, Chen Q, Bu Y, Hong M. Three novel 3D coordination polymers based on a flexible multisite cyclotetraphosphazene ligand. Dalton Transactions. 2012;41:14038-14041.
  • Ture S, Darcan C, Türkyılmaz O, Kaygusuz Ö. Synthesis, structural characterization and antimicrobial activities of cyclochlorotriphosphazene derivatives derived from N-(1-Naphthyl)- ethylenediamine. Phosphorus, Sulfur, and Silicon and the Related-Elements. 2020; 195(6): 507-515.
  • Akbas H, Okumus A, Kılıç Z, Hökelek T, Süzen Y, Koç ZB, et al. Phosphorus–nitrogen compounds part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups. European Journal of Medicinal Chemistry. 2013;70:294–307.
  • Yenilmez Çiftçi G, Tanrıverdi Eçik E, Yıldırım T, Bilgin K, Şenkuytu K, Yuksel F, et al. Synthesis and characterization of new cyclotriphosphazene compounds. Tetrahedron. 2013;69(5):1454–1461.
  • Eker Y, Şenkuytu E, Ölçer Z, Yıldırım T, Yenilmez Çiftçi G. Novel coumarin cyclotriphosphazene derivatives: Synthesis, characterization, DNA binding analysis with automated biosensor and cytotoxicity. Journal of Molecular Structure . 2020; 1209; 127971.
  • Yıldırım T, Bilgin K, Yenilmez Çiftçi G, Tanrıverdi Eçik E, Şenkuytu E, Uludağ Y, et al. Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti- cancer agents. European Journal of Medicinal Chemistry. 2012; 52: 213–220.
  • Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici B, Şimşek H, et al. Phosphorus–nitrogen compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, and antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes. New Journal of Chemistry. 40, 5588-5603.
  • Brandt K, Kruszynski R, Bartczak TJ, Czomperlik IP. AIDS-related lymphoma screen results and molecular structure determination of a new crown ether bearing aziridinylcyclophosphazene, potentially capable of ion-regulated DNA cleavage action. Inorganica Chimica Acta. 2001; 322: 138-144.
  • Song SC, Lee SB, Lee BH, Ha HW, Lee KT, Sohn, YS. Synthesis and antitumor activity of novel thermosensitive platinum(II)-cyclotriphosphazene conjugates, Journal of Controlled Release. 2003;90(3):303-311.
  • Barbera J, Bardaj M, Jimnez J, Laguna A, Martnez J, Serrano L, et al. Columnar mesomorphic organizations in cyclotriphosphazenes. Journal of the American Chemical Society. 2005;127(5):8994-9002.
  • Davarcı D, Beşli S, Demirbaş E. Synthesis of a series of triple-bridged cyclotriphosphazene hexa-alkoxy derivatives and investigation of their structural and mesomorphic properties. Liquid Crystals. 2013;40(5):624-631.
  • He Q, Dai H, Tan X, Cheng X, Liu F, Tschierske C. Synthesis and characterization of room temperature columnar mesogens of cyclotriphosphazene with shiff base units. Journal of Materials Chemistry C. 2013;1(43): 7148-7154.
  • Moriya K, Suzuki T, Yano S, Miyajima S. 31P and 13C NMR studies of a liquide crystallinecyclotriphosphazene derivative: orientational characteristics and contrasting shielding anisotropies for inorganic and organic moieties. The Journal of Physical Chemistry B. 2001; 105 (33): 7920-7927.
  • Schrögel P, Hoping M, Kowalsky W, Hunze A. Wagenblast G. Wagenblast C. Phosphazene-Based Host Materials for the Use in Blue Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials. 2011;23 (22): 4947-4953.
  • Jian S, Xiaodong W, Dezhen W. Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics. ACS Applied Materials & Interfaces. 2012;4 (8):4047-4061.
  • Sun J, Yu Z, Wang X, Wu D. Synthesis and Performance of CyclomatrixPolyphosphazene Derived from Trispiro-Cyclotriphosphazene as a Halogen-Free Nonflammable Material, ACS Sustainable Chemistry & Engineering. 2014;2(2): 231-238.
  • Inoue K, Yamauchi T, Itoh T, Ihara E. Ionic Conductivity of Cross-linked Polymethacrylate Derivatives/Cyclophosphazenes/Li+ Salt Complexes. Journal of Inorganic and Organometallic Polymers and Materials. 2007; 17(2): 367-375.
  • Yenilmez Çiftçi G, Yılmaz S, Bayık N, Şenkuytu E, Kaya EN, Durmuş M, Bulut M. Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes. Turkish Journal of Chemistry, 2020; 44(1): 64-73.
  • Şenkuytu, E. A high selective “Turn-Off” aminopyrene based cyclotriphosphazene fluorescent chemosensors for Fe3+/Cu2+ ions. Inorganica Chimica Acta. 2018; 479(1): 58-65.
  • Dell D, Fitzsimmons BW, Shaw R A. Phosphorus-nitrogen compounds. Part XIII. Phenoxy- and p-bromophenoxy-chlorocyclotriphosphazatrienes. Journal of the Chemical Society. (1965); 752: 4070-4073.
  • Allcock HR, Dembek AA, Mang MN, Riding GH, Parvez M, Visscher KB. Synthesis and structure of small-molecule cyclic phosphazenes bearing ortho-substituted aryloxy and phenoxy substituents. Inorganic Chemistry, 1992;31(13): 2734-2739.
  • Abou-Donia, M. B. (2008). Organophosphorus Ester-Induced Chronic Neurotoxicity, Archives of Environmental & Occupational Health, 2003;58 (8): 484-497.
  • Rojo G, Agulló-López F, Carriedo G. A. , GarcíA Alonso F. J. , Fidalgo Martinez J. I, Nonlinear optical properties of high glass-transition temperature polyphosphazene, Synthetic Metals, 2000; 115: 241-244.
  • Çoşut B, Topaloğlu Aksoy B, Tümay S. O, Şenocak A, Yeşilot S, , Synthesis, optical, and structural properties of bisphenol-bridged aromatic cyclic phosphazenes, Turkish Journal of Chemistry, 2020; 44 (1): 48-63.
  • Mu X, Yuan B, Hu, W, Qiu S, Lei Song L. Hu Y, Flame retardant and anti-dripping properties of polylactic acid/poly(bis(phenoxy)phosphazene)/expandable graphite composite and its flame retardant mechanism, 2015; 93(5): 760-68-760-78.
  • Cui Y, Ma X, Tang X, Luo Y. Synthesis, characterization, and thermal stability of star-shaped poly(e-caprolactone) with phosphazene core, European Polymer Journal, 2004; 40(2) 299-305.
  • Nonhebel, D. C., J. M. Tedder, J. M., & J. C. Walton, J. C. (1979). Cambridge Radicals (Cambridge: Cambridge University Press).
  • Denisov, E. (1995), Handbook of Antioxidants (Boca Raton, FL: CRC Press).
  • Kılıc A, Begec S, Çetinkaya B, Hökelek T, Kılıc Z, Gündüz N. et al. Unusual Products in the Reactions of Hexachlorocyclotriphosphazatriene with Sodium Aryloxides. Heteroatom Chemistry, 1996; 7(4) 249-256.
  • Hökelek T, Kılıc A, Begeç S, Kılıc Z, Yıldız M. 2-(2,6-Di-tert-butyl-4-methylphenoxy)-2,4,4,6,6,8,8-heptachlorocyclo-2λ5,4λ5,6λ5,8λ5-tetraphosphazatetraene. Acta Crystallographica Section C: Crystal Structure Communications. 1996; C52: 3243-3246.
  • Hökelek T, Kılıc A, Begeç S, Kılıc Z. 2,4,4,6,6-Pentachloro-2-(2,6-di-tert-butyl-4- methylphenoxy)cyclo-2λ5,4λ5,6λ5-triphosphazatriene. Acta Crystallographica Section C: Crystal Structure Communications, 1999;C55: 783-785.
  • Hökelek T, Akduran N, Kılıc A, Begeç S, Kılıc, Z. Crystal Structure of 2,4,4,6,6-Pentachloro-2-(2,4,6-trimethylphenoxy)cyclo-2λ5,4λ5,6λ5-triphosphazatriene, Analytical Sciences. 2000;16: 101-102.
  • Begeç S, Kılıç A. Phenolysis of Hexachlorocyclotriphosphazatriene,. Heteroatom Chemistry. 2005;16(4):308-310.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Saliha Begec 0000-0001-5331-6736

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 1 Ağustos 2024
Kabul Tarihi 26 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Begec, S. (2024). Synthesis and characterization of 2,4-di-methyl-, and 3,4-di-methyl-phenol derivatives of hexachlorocyclotriphosphazatriene. Türk Doğa Ve Fen Dergisi, 13(4), 85-90. https://doi.org/10.46810/tdfd.1521872
AMA Begec S. Synthesis and characterization of 2,4-di-methyl-, and 3,4-di-methyl-phenol derivatives of hexachlorocyclotriphosphazatriene. TDFD. Aralık 2024;13(4):85-90. doi:10.46810/tdfd.1521872
Chicago Begec, Saliha. “Synthesis and Characterization of 2,4-Di-Methyl-, and 3,4-Di-Methyl-Phenol Derivatives of Hexachlorocyclotriphosphazatriene”. Türk Doğa Ve Fen Dergisi 13, sy. 4 (Aralık 2024): 85-90. https://doi.org/10.46810/tdfd.1521872.
EndNote Begec S (01 Aralık 2024) Synthesis and characterization of 2,4-di-methyl-, and 3,4-di-methyl-phenol derivatives of hexachlorocyclotriphosphazatriene. Türk Doğa ve Fen Dergisi 13 4 85–90.
IEEE S. Begec, “Synthesis and characterization of 2,4-di-methyl-, and 3,4-di-methyl-phenol derivatives of hexachlorocyclotriphosphazatriene”, TDFD, c. 13, sy. 4, ss. 85–90, 2024, doi: 10.46810/tdfd.1521872.
ISNAD Begec, Saliha. “Synthesis and Characterization of 2,4-Di-Methyl-, and 3,4-Di-Methyl-Phenol Derivatives of Hexachlorocyclotriphosphazatriene”. Türk Doğa ve Fen Dergisi 13/4 (Aralık 2024), 85-90. https://doi.org/10.46810/tdfd.1521872.
JAMA Begec S. Synthesis and characterization of 2,4-di-methyl-, and 3,4-di-methyl-phenol derivatives of hexachlorocyclotriphosphazatriene. TDFD. 2024;13:85–90.
MLA Begec, Saliha. “Synthesis and Characterization of 2,4-Di-Methyl-, and 3,4-Di-Methyl-Phenol Derivatives of Hexachlorocyclotriphosphazatriene”. Türk Doğa Ve Fen Dergisi, c. 13, sy. 4, 2024, ss. 85-90, doi:10.46810/tdfd.1521872.
Vancouver Begec S. Synthesis and characterization of 2,4-di-methyl-, and 3,4-di-methyl-phenol derivatives of hexachlorocyclotriphosphazatriene. TDFD. 2024;13(4):85-90.