Araştırma Makalesi
BibTex RIS Kaynak Göster

Karvakrol Sıçan Kalp Dokusunda Notch/Hes1 Sinyal Yolunu, Oksidatif Stresi ve Hücre Ölümünü Düzenleyerek Sisplatin Kaynaklı Kardiyotoksisiteyi İyileştirir

Yıl 2024, Cilt: 13 Sayı: 4, 180 - 191, 30.12.2024
https://doi.org/10.46810/tdfd.1564047

Öz

Sisplatin esas olarak katı tümörlerin tedavisinde kullanılan en aktif sitotoksik ajanlardan biridir. Sisplatin’in yüksek doz ve uzun süreli kullanımı kardiyotoksisiteye neden olduğu bilinmektedir. Son yıllarda kardiyovasküler hastalıklarda Karvakrol’ün antiapoptotik ve antioksidan etkileri ilgi görmüştür. Bu çalışmada, bir sıçan modelinde Karvakrol’ün Sisplatin kaynaklı kardiyotoksisite üzerindeki etkileri biyokimyasal ve histolojik yöntemler kullanılarak araştırılmıştır. Yirmi sekiz sıçan 4 gruba ayrıldı: 1. kontrol grubu, 2. Karvakrol grubu, 3. Sisplatin grubu, 4. Sisplatin + Karvakrol grubu. Son ilaç uygulamasından sonra öldürülen sıçanlardan elde edilen kalp dokusunda antioksidan enzimlerin, proinflamatuar sitokinlerin, apoptotik ve otofajik proteinlerin ekspresyonu incelenmiştir. Ayrıca kalp dokusu histopatolojik olarak değerlendirilmiştir. Sisplatin'in hayvanların kalp dokusunda oksidatif strese ve inflamatuar hasara neden olduğu gözlenmiştir. Karvakrol uygulamasının antioksidan enzim (süperoksit dismutaz ve glutatyon peroksidaz) aktivitelerini önemli ölçüde artırırken, inflamatuar belirteçleri (NF-κB, TNF-α, IL-1β) baskıladı. Ayrıca Sisplatin’in apoptotik (caspase-3, Bax, Bcl-2) ve otofajik (Beclin-1, LC3A, LC3B) belirteçleri indükledi. Karvakrol’ün ise anti-apoptotik ve anti-otofajik etki göstererek kalp dokularını Sisplatin’in yıkıcı etkisinden koruyabildiği belirlenmiştir. Sisplatin uygulaması ile azalmış Notch1 ve Hes1 ekspresyon seviyeleri Karvakrol uygulamasından sonra düzenlenmiştir. H&E boyama sonuçları Karvakrol’ün miyokardiyal doku bütünlüğünü koruduğunu göstermiştir. Sonuç olarak, Karvakrol Sisplatin kaynaklı kardiyotoksisiteye karşı kardiyoprotektif bir etki gösterdi.

Kaynakça

  • Gur C, Kandemir FM, Caglayan C, Satıcı, E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chemico-biological interactions.2022; 365:110073.
  • Aksu EH, Kandemir FM, Yıldırım S, Küçükler S, Dörtbudak MB, Çağlayan C, et al. Palliative effect of curcumin on doxorubicin-induced testicular damage in male rats. Journal of biochemical and molecular toxicology. 2019; 33(10):e22384.
  • Erkaya N, Parlak SN. Effects of beta-1, 3-D glucan on systemic bortezomib treated rat pancreas Journal of Experimental and Clinical Medicine.2022; 39 (3):743-748
  • Dehghani MA, Shakiba Maram N, Moghimipour E, Khorsandi L, Atefi Khah M, Mahdavinia M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochimica et biophysica acta. Molecular basis of disease, 2020;1866(12):165911.
  • Ileriturk M, Ileriturk D, Kandemir O, Akaras N, Simsek H, Erdogan E, et al. Naringin attenuates oxaliplatin-induced nephrotoxicity and hepatotoxicity: A molecular, biochemical, and histopathological approach in a rat model. Journal of biochemical and molecular toxicology. 2024;38(1):e23604.
  • Dinc K, Ozyurt R, Coban TA, Yazici GN, Suleyman Z, Yavuzer B, et al. The effect of carvacrol on the proinflammatory cytokines, histology, and fertility outcome of cisplatin-related ovarian change in a rat model. Taiwanese journal of obstetrics & gynecology. 2023; 62(2):256–263.
  • Ragab TIM, Zoheir KMA, Mohamed NA, El Gendy AEG, Abd-ElGawad AM, Abdelhameed MF, et al. Cytoprotective potentialities of carvacrol and its nanoemulsion against cisplatin-induced nephrotoxicity in rats: development of nano-encasulation form. Heliyon. 2022;8(3):e09198.
  • Stojic IM, Zivkovic VI, Srejovic IM, Nikolic TR, Jeremic NS, Jeremic JN, et al. Cisplatin and cisplatin analogues perfusion through isolated rat heart: the effects of acute application on oxidative stress biomarkers. Molecular and cellular biochemistry. 2028;439(1-2), 19–33.
  • Lash LH. Unexpected Enhancement of Cytotoxicity of Cisplatin in a Rat Kidney Proximal Tubular Cell Line Overexpressing Mitochondrial Glutathione Transport Activity. International journal of molecular sciences. 2022; 23(4), 1993.
  • Rosic G, Srejovic I, Zivkovic V, Selakovic D, Joksimovic J, Jakovljevic V. The effects of N-acetylcysteine on cisplatin-induced cardiotoxicity on isolated rat hearts after short-term global ischemia. Toxicology reports. 2015; 2: 996–1006.
  • El-Shoura EAM, Hassanein EHM, Taha HH, Shalkami AS, Hassanein MMH, Ali FEM, et al. Edaravone and obeticholic acid protect against cisplatin-induced heart toxicity by suppressing oxidative stress and inflammation and modulating Nrf2, TLR4/p38MAPK, and JAK1/STAT3/NF-κB signals. Naunyn-Schmiedeberg's archives of pharmacology. 2024;397(8):5649–
  • El-Sawalhi MM, Ahmed LA. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chemico-biological interactions. 2014; 207:58–66.
  • Tanyeli A, Eraslan E, Güler M, Kurt N, Akaras N. Gossypin Protects Against Renal Ischemia- Reperfusion Injury in Rats. Kafkas Univ Vet Fak Derg. 2010; 26 (1): 89-96.
  • Yildirim C, Cangi S, Orkmez M, Yilmaz SG, Bozdayı MA, Yamaner H, et al. Sinapic acid attenuated cisplatin-induced cardiotoxicity by inhibiting oxidative stress and inflammation with GPX4-mediated NF-kB modulation. Cardiovascular Toxicology. 2013; 23(1):10-22.
  • Zhao L. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatolian journal of cardiology. 2019; 22(5):232–239.
  • Saleh DO, Mansour DF, Mostafa RE. Rosuvastatin and simvastatin attenuate cisplatin-induced cardiotoxicity via disruption of endoplasmic reticulum stress-mediated apoptotic death in rats: targeting ER-Chaperone GRP78 and Calpain-1 pathways. Toxicology reports. 2020;7:1178–1186.
  • Soliman AF, Anees LM, Ibrahim DM. (2018). Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats. Naunyn-Schmiedeberg's archives of pharmacology. 2018; 391(8):819–832.
  • El-Sayed EM, Abd-Allah AR, Mansour AM, El-Arabey AA. Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. Journal of biochemical and molecular toxicology. 2015; 29(4):165–172.
  • Aksu EH, Kandemir FM, Altun S, Küçükler S, Çomaklı S, Ömür AD. Ameliorative Effect of Carvacrol on Cisplatin-Induced Reproductive Damage in Male Rats. Journal of biochemical and molecular toxicology. 2016; 30(10):513–520.
  • Hassanshahi A, Kaeedi A, Rahmani MR, Hassanshahi J. The Effects of ThymusCaramanicus Jalas Extract and Its Main Constituent Carvacrol Against Cisplatin-Induced Nephrotoxicity in Mice. Iranian journal of pharmaceutical research IJPR. 2024;23(1): e140212.
  • Gencer S, Gür C, İleritürk M, Küçükler S, Akaras N, Şimşek H, et al. The ameliorative effect of carvacrol on sodium arsenite-induced hepatotoxicity in rats: Possible role of Nrf2/HO-1, RAGE/NLRP3, Bax/Bcl-2/Caspase-3, and Beclin-1 pathways. Journal of biochemical and molecular toxicology. 2024; 38(10):e23863.
  • Şimşek H, Gür C, Küçükler S, Ileritürk M, Akaras N, Oz M, et al. Carvacrol Reduces Mercuric Chloride-Induced Testicular Toxicity by Regulating Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Histopathological Changes. Biol Trace Elem Res. 2024;202(10):4605-4617.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25 (4):402–408.
  • Bukhari IA, Mohamed OY, Alhowikan AM, Lateef R, Hagar H, Assiri RA, et al. Protective Effect of Rutin Trihydrate Against Dose-Dependent, Cisplatin-Induced Cardiac Toxicity in Isolated Perfused Rat's Heart. Cureus. 2022;14(1):e21572.
  • Coskun R, Turan MI, Turan IS, Gulapoglu M. The protective effect of thiamine pyrophosphate, but not thiamine, against cardiotoxicity induced with cisplatin in rats. Drug and chemical toxicology. 2014; 37(3):290–294.
  • Abd El-Rhman RH, El-Naga RN, Gad AM, Tadros MG, Hassaneen SK. Dibenzazepine Attenuates Against Cisplatin-Induced Nephrotoxicity in Rats: Involvement of NOTCH Pathway. Front Pharmacol. 2020; 11:567852.
  • Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life sciences. 2021; 287:120104.
  • Ağgül AG, Kuzu M, Kandemir FM, Küçükler S, Çağlayan C. Alterations in Enzyme Activity of Carbonic Anhydrase, 6-phosphogluconate Dehydrogenase and Thioredoxin Reductase in Rats Exposed to Doxorubicin and Morin. Clinical and Experimental Health Sciences. 2020;10 (3), 228-234
  • Başak Türkmen N, Aşkın Özek D, Taşlıdere A, Çiftçi O, Saral Ö, Gül CC. Protective Role of Diospyros lotus L. in Cisplatin-Induced Cardiotoxicity: Cardiac Damage and Oxidative Stress in Rats. Turk J Pharm Sci. 2022;19(2):132-137.
  • Keleş O, Can S, Cigsar G, Colak S, Erol H, Akaras N, et al. Hepatoprotective effects of B-1, 3-(D)- glucan on bortezomib-induced liver damage in rats. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2014;20(6):929-38.
  • Ekinci-Akdemir FN, Yildirim S, Kandemir FM, Gülçin İ, Küçükler S, Sağlam YS, et al. The effects of casticin and myricetin on liver damage induced by methotrexate in rats. Iran J Basic Med Sci. 2018;21(12):1281-1288.
  • FM Kandemir, M Ozkaraca, S Küçükler, C Caglayan, B Hanedan. Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. Toxin reviews. 2018;37 (4):287-293
  • Aydin M, Cevik A, Kandemir FM, Yuksel M, Apaydin AM. Evaluation of hormonal change, biochemical parameters, and histopathological status of uterus in rats exposed to 50-Hz electromagnetic field. Toxicology and industrial health. 2009;25(3):153–158.
  • Semis HS, Gur C, Ileriturk M, Kaynar O, Kandemir FM. (2021). Investigation of the anti-inflammatory effects of caffeic acid phenethyl ester in a model of λ-Carrageenan-induced paw edema in rats. Human & experimental toxicology. 2021; 40: S721–S738.
  • Erisir M, Kandemir FM, Yüksel M. The effects of Caesarean section on lipid peroxidation and some antioxidants in the blood of newborn calves. Veterinarski arhiv. 2013; 83 (2):153-159
  • Akaras N, Toktay E, Celep NA, Yüce N, Şimşek H, Özkan Hİ. Antioxidant Effects of Bromelain on Paracetamol-Induced Renal Injury in Rats. Arch Basic Clin Res. 2023; 10: 1-8
  • Varışlı B, Caglayan C, Kandemir FM, Gür C, Ayna A, Genç A, et al. Chrysin mitigates diclofenac-induced hepatotoxicity by modulating oxidative stress, apoptosis, autophagy and endoplasmic reticulum stress in rats. Molecular Biology Reports. 2023; 50(1): 433-442.
  • Ayna A, Özbolat S. N, Darendelioglu E. Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells. Molecular Biology Reports. 2020; 47:8535-8543
  • Kızıl HE, Caglayan C, Darendelioğlu E, Ayna A, Gür C, Kandemir FM, et al. Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 signaling pathways. Molecular Biology Reports. 2023; 50(4):3479-3488.
  • Taştan Bal T, Akaras N, Demir Ö, Ugan RA. Protective effect of astaxanthin and metformin in the liver of rats in which the polycystic ovary syndrome model was formed by giving letrozole. Iran J Basic Med Sci. 2023;26(6):688-694.
  • Şimşek H, Küçükler S, Gür C, Akaras N, Kandemir FM. Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environ Sci Pollut Res Int. 2023;30(45):101208-101222.
  • Şimşek H, Küçükler S, Gür C, İleritürk M, Aygörmez S, Kandemir FM. Protective effects of zingerone against sodium arsenite-induced lung toxicity: A multi-biomarker approach. Iran J Basic Med Sci. 2023;26(9):1098-1106.
  • Akaras N, Ileriturk M, Gur C, Kucukler S, Oz M, Kandemir FM. The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. Environ Sci Pollut Res Int. 2023;30(38):89479-89494.
  • Akaras N, FM Kandemir, H Şimşek, C Gür, S Aygörmez. Antioxidant, Antiinflammatory, and Antiapoptotic Effects of Rutin in Spleen Toxicity Induced by Sodium Valproate in Rats. Türk Doğa ve Fen Dergisi. 2023; 12 (2):138-144
  • Akaras N, Simsek H, Ordu M. A histological and biochemical study of the protective role of hesperidin in testicular ischemia-reperfusion injury. Int J Med Biochem 2023;6(1):21-27
  • Akaras N, Gür C, Şimşek H, Tuncer SÇ. Effects of Quercetin on Cypermethrin-Induced Stomach Injury: The Role of Oxidative Stress, Inflammation, and Apoptosis. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2023;12 (2):556-566
  • Khadrawy YA, Hosny EN, El-Gizawy MM, Sawie HG, Aboul Ezz HS. The Effect of Curcumin Nanoparticles on Cisplatin-Induced Cardiotoxicity in Male Wistar Albino Rats. Cardiovasc Toxicol. 2021;21(6):433-443.
  • Akarsu SA, Gür C, İleritürk M, Akaras N, Küçükler S, Kandemir FM. Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. J Trace Elem Med Biol. 2023;80:127315.
  • Akaras N, Kucukler S, Gur C, Ileriturk M, Kandemir FM. Sinapic acid protects against lead acetate-induced lung toxicity by reducing oxidative stress, apoptosis, inflammation, and endoplasmic reticulum stress damage. Environ Toxicol. 2024;39(7):3820-3832.
  • Akaras N, Gür C, Caglayan C, Kandemir FM. Protective effects of naringin against oxaliplatin-induced testicular damage in rats: Involvement of oxidative stress, inflammation, endoplasmic reticulum stress, apoptosis, and histopathology. Iran J Basic Med Sci. 2024;27(4):466-474.
  • Akarsu SA, İleritürk M, Küçükler S, Akaras N, Gür C, Kandemir FM. Ameliorative effects of sinapic acid against vancomycin-induced testicular oxidative damage, apoptosis, inflammation, testicular histopathologic disorders and decreased epididymal sperm quality. Reprod Toxicol. 2024;129:108666.
  • Akarsu SA, Gür C, Küçükler S, Akaras N, İleritürk M, Kandemir FM. Protective Effects of Syringic Acid Against Oxidative Damage, Apoptosis, Autophagy, Inflammation, Testicular Histopathologic Disorders, and Impaired Sperm Quality in the Testicular Tissue of Rats Induced by Mercuric Chloride. Environ Toxicol. Published online August 3, 2024.
  • Yilmaz S, Gur C, Kucukler S, Akaras N, Kandemir FM. Zingerone attenuates sciatic nerve damage caused by sodium arsenite by inhibiting NF-κB, caspase-3, and ATF-6/CHOP pathways and activating the Akt2/FOXO1 pathway. Iran J Basic Med Sci. 2024;27(4):485-491.
  • Ekinci Akdemir FN, Yildirim S, Kandemir FM, Aksu EH, Guler MC, Kiziltunc Ozmen H, et al. The antiapoptotic and antioxidant effects of eugenol against cisplatin-induced testicular damage in the experimental model. Andrologia. 2019;51(9):e13353.
  • Xing JJ, Mi XJ, Hou JG, Cai EB, Zheng SW, Wang SH,et al. (2022). Maltol mitigates cisplatin-evoked cardiotoxicity via inhibiting the PI3K/Akt signaling pathway in rodents in vivo and in vitro. Phytotherapy research: PTR. 2022;36(4):1724–1735.
  • Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol. 2020;8:434.
  • Semis HS, Gur C, Ileriturk M, Kandemir FM, Kaynar O. Evaluation of Therapeutic Effects of Quercetin Against Achilles Tendinopathy in Rats via Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Metalloproteinases. Am J Sports Med.
  • Kandemir FM, Ileriturk M, Gur C. Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol Biol Rep. 2022;49(7):6063-6074.
  • Çomaklı S, Özdemir S, Küçükler S, Kandemir FM. Beneficial effects of quercetin on vincristine-induced liver injury in rats: Modulating the levels of Nrf2/HO-1, NF-kB/STAT3, and SIRT1/PGC-1α. J Biochem Mol Toxicol. 2023;37(5):e23326.
  • Kankılıç NA, Şimşek H, Akaras N, Gür C, Ileritürk M, Küçükler S, et al. Protective effects of naringin on colistin-induced damage in rat testicular tissue: Modulating the levels of Nrf-2/HO-1, AKT-2/FOXO1A, Bax/Bcl2/Caspase-3, and Beclin-1/LC3A/LC3B signaling pathways. J Biochem Mol Toxicol. 2024;38(2):e23643.
  • Tuncer SÇ, Küçükler S, Gür C, Aygörmez S, Kandemir FM. Effects of chrysin in cadmium-induced testicular toxicity in the rat; role of multi-pathway regulation. Mol Biol Rep. 2023;50(10):8305-8318.
  • Kankılıç NA, Küçükler S, Gür C, Akarsu SA, Akaras N, Şimşek H, et al. Naringin protects against paclitaxel-induced toxicity in rat testicular tissues by regulating genes in pro-inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. Journal of biochemical and molecular toxicology. 2024; 38(7):e23751.
  • Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7(1):95.
  • Luo X, Zhang L, Han GD, Lu P, Zhang Y. MDM2 inhibition improves cisplatin-induced renal injury in mice via inactivation of Notch/hes1 signaling pathway. Hum Exp Toxicol. 2021;40(2):369-379.

Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue

Yıl 2024, Cilt: 13 Sayı: 4, 180 - 191, 30.12.2024
https://doi.org/10.46810/tdfd.1564047

Öz

Cisplatin is one of the most active cytotoxic agents used mainly in the treatment of solid tumors. High doses and long-term use of Cisplatin are known to cause cardiotoxicity. In recent years, the antiapoptotic and antioxidant effects of Carvacrol in cardiovascular diseases have attracted attention. In this study, the effects of Carvacrol on Cisplatin-induced cardiotoxicity in a rat model were investigated using biochemical and histological methods. Twenty-eight rats were divided into 4 groups: 1. Control group, 2. Carvacrol group, 3. Cisplatin group, 4. Cisplatin + Carvacrol group. The expression of antioxidant enzymes, proinflammatory cytokines, apoptotic, and autophagic proteins was examined in heart tissue obtained from rats sacrificed after the last drug administration. Additionally, heart tissue was evaluated histopathologically. Cisplatin has been observed to cause oxidative stress and inflammatory damage in animal heart tissue. Carvacrol administration significantly increased antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activities while suppressing inflammatory markers (NF-κB, TNF-α, IL-1β). Additionally, Cisplatin induced apoptotic (caspase-3, Bax, Bcl-2) and autophagic (Beclin-1, LC3A, LC3B) markers. It has been determined that carvacrol can protect heart tissues from the destructive effects of cisplatin by exerting anti-apoptotic and anti-autophagic effects. The expression levels of Notch1 and Hes1, which were decreased by cisplatin administration, were upregulated after administration of Carvacrol. H&E staining results showed that Carvacrol preserved myocardial tissue integrity. In conclusion, Carvacrol showed a cardioprotective effect against cisplatin-induced cardiotoxicity.

Kaynakça

  • Gur C, Kandemir FM, Caglayan C, Satıcı, E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chemico-biological interactions.2022; 365:110073.
  • Aksu EH, Kandemir FM, Yıldırım S, Küçükler S, Dörtbudak MB, Çağlayan C, et al. Palliative effect of curcumin on doxorubicin-induced testicular damage in male rats. Journal of biochemical and molecular toxicology. 2019; 33(10):e22384.
  • Erkaya N, Parlak SN. Effects of beta-1, 3-D glucan on systemic bortezomib treated rat pancreas Journal of Experimental and Clinical Medicine.2022; 39 (3):743-748
  • Dehghani MA, Shakiba Maram N, Moghimipour E, Khorsandi L, Atefi Khah M, Mahdavinia M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochimica et biophysica acta. Molecular basis of disease, 2020;1866(12):165911.
  • Ileriturk M, Ileriturk D, Kandemir O, Akaras N, Simsek H, Erdogan E, et al. Naringin attenuates oxaliplatin-induced nephrotoxicity and hepatotoxicity: A molecular, biochemical, and histopathological approach in a rat model. Journal of biochemical and molecular toxicology. 2024;38(1):e23604.
  • Dinc K, Ozyurt R, Coban TA, Yazici GN, Suleyman Z, Yavuzer B, et al. The effect of carvacrol on the proinflammatory cytokines, histology, and fertility outcome of cisplatin-related ovarian change in a rat model. Taiwanese journal of obstetrics & gynecology. 2023; 62(2):256–263.
  • Ragab TIM, Zoheir KMA, Mohamed NA, El Gendy AEG, Abd-ElGawad AM, Abdelhameed MF, et al. Cytoprotective potentialities of carvacrol and its nanoemulsion against cisplatin-induced nephrotoxicity in rats: development of nano-encasulation form. Heliyon. 2022;8(3):e09198.
  • Stojic IM, Zivkovic VI, Srejovic IM, Nikolic TR, Jeremic NS, Jeremic JN, et al. Cisplatin and cisplatin analogues perfusion through isolated rat heart: the effects of acute application on oxidative stress biomarkers. Molecular and cellular biochemistry. 2028;439(1-2), 19–33.
  • Lash LH. Unexpected Enhancement of Cytotoxicity of Cisplatin in a Rat Kidney Proximal Tubular Cell Line Overexpressing Mitochondrial Glutathione Transport Activity. International journal of molecular sciences. 2022; 23(4), 1993.
  • Rosic G, Srejovic I, Zivkovic V, Selakovic D, Joksimovic J, Jakovljevic V. The effects of N-acetylcysteine on cisplatin-induced cardiotoxicity on isolated rat hearts after short-term global ischemia. Toxicology reports. 2015; 2: 996–1006.
  • El-Shoura EAM, Hassanein EHM, Taha HH, Shalkami AS, Hassanein MMH, Ali FEM, et al. Edaravone and obeticholic acid protect against cisplatin-induced heart toxicity by suppressing oxidative stress and inflammation and modulating Nrf2, TLR4/p38MAPK, and JAK1/STAT3/NF-κB signals. Naunyn-Schmiedeberg's archives of pharmacology. 2024;397(8):5649–
  • El-Sawalhi MM, Ahmed LA. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chemico-biological interactions. 2014; 207:58–66.
  • Tanyeli A, Eraslan E, Güler M, Kurt N, Akaras N. Gossypin Protects Against Renal Ischemia- Reperfusion Injury in Rats. Kafkas Univ Vet Fak Derg. 2010; 26 (1): 89-96.
  • Yildirim C, Cangi S, Orkmez M, Yilmaz SG, Bozdayı MA, Yamaner H, et al. Sinapic acid attenuated cisplatin-induced cardiotoxicity by inhibiting oxidative stress and inflammation with GPX4-mediated NF-kB modulation. Cardiovascular Toxicology. 2013; 23(1):10-22.
  • Zhao L. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatolian journal of cardiology. 2019; 22(5):232–239.
  • Saleh DO, Mansour DF, Mostafa RE. Rosuvastatin and simvastatin attenuate cisplatin-induced cardiotoxicity via disruption of endoplasmic reticulum stress-mediated apoptotic death in rats: targeting ER-Chaperone GRP78 and Calpain-1 pathways. Toxicology reports. 2020;7:1178–1186.
  • Soliman AF, Anees LM, Ibrahim DM. (2018). Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats. Naunyn-Schmiedeberg's archives of pharmacology. 2018; 391(8):819–832.
  • El-Sayed EM, Abd-Allah AR, Mansour AM, El-Arabey AA. Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. Journal of biochemical and molecular toxicology. 2015; 29(4):165–172.
  • Aksu EH, Kandemir FM, Altun S, Küçükler S, Çomaklı S, Ömür AD. Ameliorative Effect of Carvacrol on Cisplatin-Induced Reproductive Damage in Male Rats. Journal of biochemical and molecular toxicology. 2016; 30(10):513–520.
  • Hassanshahi A, Kaeedi A, Rahmani MR, Hassanshahi J. The Effects of ThymusCaramanicus Jalas Extract and Its Main Constituent Carvacrol Against Cisplatin-Induced Nephrotoxicity in Mice. Iranian journal of pharmaceutical research IJPR. 2024;23(1): e140212.
  • Gencer S, Gür C, İleritürk M, Küçükler S, Akaras N, Şimşek H, et al. The ameliorative effect of carvacrol on sodium arsenite-induced hepatotoxicity in rats: Possible role of Nrf2/HO-1, RAGE/NLRP3, Bax/Bcl-2/Caspase-3, and Beclin-1 pathways. Journal of biochemical and molecular toxicology. 2024; 38(10):e23863.
  • Şimşek H, Gür C, Küçükler S, Ileritürk M, Akaras N, Oz M, et al. Carvacrol Reduces Mercuric Chloride-Induced Testicular Toxicity by Regulating Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Histopathological Changes. Biol Trace Elem Res. 2024;202(10):4605-4617.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25 (4):402–408.
  • Bukhari IA, Mohamed OY, Alhowikan AM, Lateef R, Hagar H, Assiri RA, et al. Protective Effect of Rutin Trihydrate Against Dose-Dependent, Cisplatin-Induced Cardiac Toxicity in Isolated Perfused Rat's Heart. Cureus. 2022;14(1):e21572.
  • Coskun R, Turan MI, Turan IS, Gulapoglu M. The protective effect of thiamine pyrophosphate, but not thiamine, against cardiotoxicity induced with cisplatin in rats. Drug and chemical toxicology. 2014; 37(3):290–294.
  • Abd El-Rhman RH, El-Naga RN, Gad AM, Tadros MG, Hassaneen SK. Dibenzazepine Attenuates Against Cisplatin-Induced Nephrotoxicity in Rats: Involvement of NOTCH Pathway. Front Pharmacol. 2020; 11:567852.
  • Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life sciences. 2021; 287:120104.
  • Ağgül AG, Kuzu M, Kandemir FM, Küçükler S, Çağlayan C. Alterations in Enzyme Activity of Carbonic Anhydrase, 6-phosphogluconate Dehydrogenase and Thioredoxin Reductase in Rats Exposed to Doxorubicin and Morin. Clinical and Experimental Health Sciences. 2020;10 (3), 228-234
  • Başak Türkmen N, Aşkın Özek D, Taşlıdere A, Çiftçi O, Saral Ö, Gül CC. Protective Role of Diospyros lotus L. in Cisplatin-Induced Cardiotoxicity: Cardiac Damage and Oxidative Stress in Rats. Turk J Pharm Sci. 2022;19(2):132-137.
  • Keleş O, Can S, Cigsar G, Colak S, Erol H, Akaras N, et al. Hepatoprotective effects of B-1, 3-(D)- glucan on bortezomib-induced liver damage in rats. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2014;20(6):929-38.
  • Ekinci-Akdemir FN, Yildirim S, Kandemir FM, Gülçin İ, Küçükler S, Sağlam YS, et al. The effects of casticin and myricetin on liver damage induced by methotrexate in rats. Iran J Basic Med Sci. 2018;21(12):1281-1288.
  • FM Kandemir, M Ozkaraca, S Küçükler, C Caglayan, B Hanedan. Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. Toxin reviews. 2018;37 (4):287-293
  • Aydin M, Cevik A, Kandemir FM, Yuksel M, Apaydin AM. Evaluation of hormonal change, biochemical parameters, and histopathological status of uterus in rats exposed to 50-Hz electromagnetic field. Toxicology and industrial health. 2009;25(3):153–158.
  • Semis HS, Gur C, Ileriturk M, Kaynar O, Kandemir FM. (2021). Investigation of the anti-inflammatory effects of caffeic acid phenethyl ester in a model of λ-Carrageenan-induced paw edema in rats. Human & experimental toxicology. 2021; 40: S721–S738.
  • Erisir M, Kandemir FM, Yüksel M. The effects of Caesarean section on lipid peroxidation and some antioxidants in the blood of newborn calves. Veterinarski arhiv. 2013; 83 (2):153-159
  • Akaras N, Toktay E, Celep NA, Yüce N, Şimşek H, Özkan Hİ. Antioxidant Effects of Bromelain on Paracetamol-Induced Renal Injury in Rats. Arch Basic Clin Res. 2023; 10: 1-8
  • Varışlı B, Caglayan C, Kandemir FM, Gür C, Ayna A, Genç A, et al. Chrysin mitigates diclofenac-induced hepatotoxicity by modulating oxidative stress, apoptosis, autophagy and endoplasmic reticulum stress in rats. Molecular Biology Reports. 2023; 50(1): 433-442.
  • Ayna A, Özbolat S. N, Darendelioglu E. Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells. Molecular Biology Reports. 2020; 47:8535-8543
  • Kızıl HE, Caglayan C, Darendelioğlu E, Ayna A, Gür C, Kandemir FM, et al. Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 signaling pathways. Molecular Biology Reports. 2023; 50(4):3479-3488.
  • Taştan Bal T, Akaras N, Demir Ö, Ugan RA. Protective effect of astaxanthin and metformin in the liver of rats in which the polycystic ovary syndrome model was formed by giving letrozole. Iran J Basic Med Sci. 2023;26(6):688-694.
  • Şimşek H, Küçükler S, Gür C, Akaras N, Kandemir FM. Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environ Sci Pollut Res Int. 2023;30(45):101208-101222.
  • Şimşek H, Küçükler S, Gür C, İleritürk M, Aygörmez S, Kandemir FM. Protective effects of zingerone against sodium arsenite-induced lung toxicity: A multi-biomarker approach. Iran J Basic Med Sci. 2023;26(9):1098-1106.
  • Akaras N, Ileriturk M, Gur C, Kucukler S, Oz M, Kandemir FM. The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. Environ Sci Pollut Res Int. 2023;30(38):89479-89494.
  • Akaras N, FM Kandemir, H Şimşek, C Gür, S Aygörmez. Antioxidant, Antiinflammatory, and Antiapoptotic Effects of Rutin in Spleen Toxicity Induced by Sodium Valproate in Rats. Türk Doğa ve Fen Dergisi. 2023; 12 (2):138-144
  • Akaras N, Simsek H, Ordu M. A histological and biochemical study of the protective role of hesperidin in testicular ischemia-reperfusion injury. Int J Med Biochem 2023;6(1):21-27
  • Akaras N, Gür C, Şimşek H, Tuncer SÇ. Effects of Quercetin on Cypermethrin-Induced Stomach Injury: The Role of Oxidative Stress, Inflammation, and Apoptosis. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2023;12 (2):556-566
  • Khadrawy YA, Hosny EN, El-Gizawy MM, Sawie HG, Aboul Ezz HS. The Effect of Curcumin Nanoparticles on Cisplatin-Induced Cardiotoxicity in Male Wistar Albino Rats. Cardiovasc Toxicol. 2021;21(6):433-443.
  • Akarsu SA, Gür C, İleritürk M, Akaras N, Küçükler S, Kandemir FM. Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. J Trace Elem Med Biol. 2023;80:127315.
  • Akaras N, Kucukler S, Gur C, Ileriturk M, Kandemir FM. Sinapic acid protects against lead acetate-induced lung toxicity by reducing oxidative stress, apoptosis, inflammation, and endoplasmic reticulum stress damage. Environ Toxicol. 2024;39(7):3820-3832.
  • Akaras N, Gür C, Caglayan C, Kandemir FM. Protective effects of naringin against oxaliplatin-induced testicular damage in rats: Involvement of oxidative stress, inflammation, endoplasmic reticulum stress, apoptosis, and histopathology. Iran J Basic Med Sci. 2024;27(4):466-474.
  • Akarsu SA, İleritürk M, Küçükler S, Akaras N, Gür C, Kandemir FM. Ameliorative effects of sinapic acid against vancomycin-induced testicular oxidative damage, apoptosis, inflammation, testicular histopathologic disorders and decreased epididymal sperm quality. Reprod Toxicol. 2024;129:108666.
  • Akarsu SA, Gür C, Küçükler S, Akaras N, İleritürk M, Kandemir FM. Protective Effects of Syringic Acid Against Oxidative Damage, Apoptosis, Autophagy, Inflammation, Testicular Histopathologic Disorders, and Impaired Sperm Quality in the Testicular Tissue of Rats Induced by Mercuric Chloride. Environ Toxicol. Published online August 3, 2024.
  • Yilmaz S, Gur C, Kucukler S, Akaras N, Kandemir FM. Zingerone attenuates sciatic nerve damage caused by sodium arsenite by inhibiting NF-κB, caspase-3, and ATF-6/CHOP pathways and activating the Akt2/FOXO1 pathway. Iran J Basic Med Sci. 2024;27(4):485-491.
  • Ekinci Akdemir FN, Yildirim S, Kandemir FM, Aksu EH, Guler MC, Kiziltunc Ozmen H, et al. The antiapoptotic and antioxidant effects of eugenol against cisplatin-induced testicular damage in the experimental model. Andrologia. 2019;51(9):e13353.
  • Xing JJ, Mi XJ, Hou JG, Cai EB, Zheng SW, Wang SH,et al. (2022). Maltol mitigates cisplatin-evoked cardiotoxicity via inhibiting the PI3K/Akt signaling pathway in rodents in vivo and in vitro. Phytotherapy research: PTR. 2022;36(4):1724–1735.
  • Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol. 2020;8:434.
  • Semis HS, Gur C, Ileriturk M, Kandemir FM, Kaynar O. Evaluation of Therapeutic Effects of Quercetin Against Achilles Tendinopathy in Rats via Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Metalloproteinases. Am J Sports Med.
  • Kandemir FM, Ileriturk M, Gur C. Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol Biol Rep. 2022;49(7):6063-6074.
  • Çomaklı S, Özdemir S, Küçükler S, Kandemir FM. Beneficial effects of quercetin on vincristine-induced liver injury in rats: Modulating the levels of Nrf2/HO-1, NF-kB/STAT3, and SIRT1/PGC-1α. J Biochem Mol Toxicol. 2023;37(5):e23326.
  • Kankılıç NA, Şimşek H, Akaras N, Gür C, Ileritürk M, Küçükler S, et al. Protective effects of naringin on colistin-induced damage in rat testicular tissue: Modulating the levels of Nrf-2/HO-1, AKT-2/FOXO1A, Bax/Bcl2/Caspase-3, and Beclin-1/LC3A/LC3B signaling pathways. J Biochem Mol Toxicol. 2024;38(2):e23643.
  • Tuncer SÇ, Küçükler S, Gür C, Aygörmez S, Kandemir FM. Effects of chrysin in cadmium-induced testicular toxicity in the rat; role of multi-pathway regulation. Mol Biol Rep. 2023;50(10):8305-8318.
  • Kankılıç NA, Küçükler S, Gür C, Akarsu SA, Akaras N, Şimşek H, et al. Naringin protects against paclitaxel-induced toxicity in rat testicular tissues by regulating genes in pro-inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. Journal of biochemical and molecular toxicology. 2024; 38(7):e23751.
  • Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7(1):95.
  • Luo X, Zhang L, Han GD, Lu P, Zhang Y. MDM2 inhibition improves cisplatin-induced renal injury in mice via inactivation of Notch/hes1 signaling pathway. Hum Exp Toxicol. 2021;40(2):369-379.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Makaleler
Yazarlar

Nurhan Akaras 0000-0002-8457-9448

Özge Kandemir 0000-0001-8884-4168

Hasan Şimşek 0000-0001-5573-4923

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 9 Ekim 2024
Kabul Tarihi 8 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Akaras, N., Kandemir, Ö., & Şimşek, H. (2024). Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue. Türk Doğa Ve Fen Dergisi, 13(4), 180-191. https://doi.org/10.46810/tdfd.1564047
AMA Akaras N, Kandemir Ö, Şimşek H. Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue. TDFD. Aralık 2024;13(4):180-191. doi:10.46810/tdfd.1564047
Chicago Akaras, Nurhan, Özge Kandemir, ve Hasan Şimşek. “Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue”. Türk Doğa Ve Fen Dergisi 13, sy. 4 (Aralık 2024): 180-91. https://doi.org/10.46810/tdfd.1564047.
EndNote Akaras N, Kandemir Ö, Şimşek H (01 Aralık 2024) Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue. Türk Doğa ve Fen Dergisi 13 4 180–191.
IEEE N. Akaras, Ö. Kandemir, ve H. Şimşek, “Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue”, TDFD, c. 13, sy. 4, ss. 180–191, 2024, doi: 10.46810/tdfd.1564047.
ISNAD Akaras, Nurhan vd. “Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue”. Türk Doğa ve Fen Dergisi 13/4 (Aralık 2024), 180-191. https://doi.org/10.46810/tdfd.1564047.
JAMA Akaras N, Kandemir Ö, Şimşek H. Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue. TDFD. 2024;13:180–191.
MLA Akaras, Nurhan vd. “Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue”. Türk Doğa Ve Fen Dergisi, c. 13, sy. 4, 2024, ss. 180-91, doi:10.46810/tdfd.1564047.
Vancouver Akaras N, Kandemir Ö, Şimşek H. Carvacrol Ameliorates Cisplatin-Induced Cardiotoxicity By Regulating Notch/Hes1 Signaling Pathway, Oxidative Stress and Cell Death In Rat Cardiac Tissue. TDFD. 2024;13(4):180-91.