Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Waste Mineral Wool in Geopolymer Production

Yıl 2024, Cilt: 13 Sayı: 4, 192 - 198, 30.12.2024
https://doi.org/10.46810/tdfd.1569404

Öz

Mineral wools are widely used insulation materials in the construction industry; however, their non-recyclable nature poses an environmental challenge. In this study, mineral wool wastes were sustainably utilized by grinding them into powder and activating them with Na₂SiO₃ and NaOH solutions. During the production process, different silica modulus ratios of Na₂SiO₃ (2.0, 2.5, and 3.0) were examined, and the optimal ratio was determined to be 2.5. The mechanical properties of the samples were evaluated after curing at various temperatures (25°C, 50°C, 75°C, and 100°C), with the maximum compressive strength of 59.2 MPa observed in glass wool samples. Thermal curing enhanced compressive strength, particularly at 75°C, for glass wool-based samples. Additionally, the compressive strengths of the samples stabilized after a curing period of 90 days. These findings demonstrate the feasibility of recycling mineral wool wastes into high-performance materials and highlight the significant role of thermal curing in enhancing mechanical properties.

Kaynakça

  • Benhelal E, Zahedi G, Shamsaei E, Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod. 2013;51:142–61.
  • Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim. 1991;37(8):1633–56.
  • Davidovits J. Geopolymer Chemistry and Applications. Saint-Quentin, France: Geopolymer Institute; 2011.
  • Yip CK, Lukey GC, Provis JL, van Deventer JSJ. Effect of calcium silicate sources on geopolymerisation. Cem Concr Res. 2008;38(4):554–64.
  • Diaz E, Allouche E, Eklund S. Factors affecting the suitability of fly ash as source material for geopolymers. Fuel. 2010;89(5):992–6.
  • Nath P, Sarker PK. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater. 2014;66:163–71.
  • Thokchom S, Dutta D, Ghosh S. Effect of incorporating silica fume in fly ash geopolymers. World Acad Sci Eng Technol. 2011;60:243–7.
  • Ryu GS, Lee YB, Koh KT, Chung YS. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater. 2013;47:409–18.
  • Fu Y, Cai L, Wang Y. Freeze–thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr Build Mater. 2011;25(7):3144–8.
  • Pilehvar S, Sanfelix SG, Szczotok AM, Rodríguez JF, Valentini L, Lanzón M, et al. Effect of temperature on geopolymer and Portland cement composites modified with micro-encapsulated phase change materials. Constr Build Mater. 2020;252:119055.
  • Giro-Paloma J, Martínez M, Cabeza LF, Fernández AI. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew Sustain Energy Rev. 2016;53:1059–75.
  • Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag. 2004;45(2):263–75.
  • Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev. 2007;11(6):1146–66.
  • Duxson P, Provis JL, Lukey GC, Van Deventer JSJ. The role of inorganic polymer technology in the development of ‘green concrete’. Cem Concr Res. 2007;37(12):1590–7.
  • Schneider M, Romer M, Tschudin M, Bolio H. Sustainable cement production—present and future. Cem Concr Res. 2011;41(7):642–50.
  • Part WK, Ramli M, Cheah CB. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater. 2015;77:370–95.
  • Singh B, Ishwarya G, Gupta M, Bhattacharyya S. Geopolymer concrete: A review of some recent developments. Constr Build Mater. 2015;85:78–90.
  • Karakoç MB, Türkmen İ, Maraş MM, Kantarci F, Demirboğa R, Toprak MU, et al. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater. 2014;72:283–92.
  • Karthik A, Sudalaimani K, Kumar CV. Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self-curing bio-geopolymer concrete. Constr Build Mater. 2017;149:338–49.
  • Yaseri S, Hajiaghaei G, Mohammadi F, Mahdikhani M, Farokhzad R. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Constr Build Mater. 2017;157:534–45.
  • Cao J, Chung D. Damage evolution during freeze–thaw cycling of cement mortar, studied by electrical resistivity measurement. Cem Concr Res. 2002;32(10):1657–61.
  • Marzouk H, Jiang D. Effects of freezing and thawing on the tension properties of high-strength concrete. ACI Mater J. 1994;91(6):577–86.
  • Jacobsen S, Sellevold EJ. Self-healing of high-strength concrete after deterioration by freeze/thaw. Cem Concr Res. 1996;26(1):55–62.
  • Yazıcı H. The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete. Constr Build Mater. 2008;22(4):456–62.
  • Allahverdi A, Abadi MM, Hossain KMA, Lachemi M. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cem Concr Res Technol. 2014;103:107–14.
  • Slavik R, Bednarik V, Vondruska M, Nemec A. Preparation of geopolymer from fluidized bed combustion bottom ash. J Mater Process Technol. 2008;200(1-3):265–70.
  • Jo B-W, Park S-K, Park J-B. Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA). Cem Concr Compos. 2007;29(2):128–35.
  • Müller A, Leydolph B, Stanelle K. Recycling mineral wool waste: technologies for the conversion of the fiber structure, Part 1. Int J Miner Process. 2009;58(6):378–81.
  • Väntsi O, Kärki T. Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods. J Mater Cycles Waste Manag. 2014;16(1):62–72.
  • Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M. One-part alkali-activated materials: A review. Cem Concr Res. 2018;103:21–34.
  • Yliniemi J, Luukkonen T, Kaiser A, Illikainen M, editors. Mineral wool waste-based geopolymers. IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2019.
  • Yliniemi J, Kinnunen P, Karinkanta P, Illikainen M. Utilization of mineral wools as alkali-activated material precursor. Materials. 2016;9(5):312.
  • Yliniemi J, Laitinen O, Kinnunen P, Illikainen M. Pulverization of fibrous mineral wool waste. J Mater Cycles Waste Manag. 2018;20(2):1248–56.
  • Kinnunen P, Yliniemi J, Talling B, Illikainen M. Rockwool waste in fly ash geopolymer composites. J Mater Cycles Waste Manag. 2017;19(3):1220–7.
  • Weil M, Dombrowski K, Buchwald A. Life-cycle analysis of geopolymers. In: Geopolymers. Elsevier; 2009. p. 194–210.
  • Li Z, Ding Z, Zhang Y, editors. Development of sustainable cementitious materials. Proceedings of International Workshop on Sustainable Development and Concrete Technology; Beijing, China; 2004.
  • Komnitsas KA. Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Eng. 2011;21:1023–32.
  • Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr Build Mater. 2008;22(7):1315–22.
  • Kong DL, Sanjayan JG. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res. 2010;40(2):334–9.
  • Ünsal Sağlık A. Alkali-silica reactivity and activation of ground perlite-containing cementitious mixtures [dissertation]. Middle East Technical University; 2009.
  • Alahverdi A, Mehrpour K, Najafikani E. Taftan pozzolan-based geopolymer cement. Cem Concr Res. 2008.
  • Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem Concr Res. 2005;35(6):1224–32.
  • Bakharev T. Resistance of geopolymer materials to acid attack. Cem Concr Res. 2005;35(4):658–73.
  • Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res. 2005;35(6):1233–46.
  • Thokchom S, Ghosh P, Ghosh S. Acid resistance of fly ash based geopolymer mortars. Int J Recent Trends Eng. 2009;1(6):36–40.
  • Thokchom S, Ghosh P, Ghosh S. Resistance of fly ash based geopolymer mortars in sulfuric acid. ARPN J Eng Appl Sci. 2009;4(1):65–70.
  • Atiş CD, Bilim C, Çelik Ö, Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–55.
  • Komljenović M, Baščarević Z, Bradić V. Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater. 2010;181(1-3):35–42.
  • Anuar K, Ridzuan A, Ismail S. Strength characteristic of geopolymer concrete containing recycled concrete aggregate. Int J Civ Environ Eng. 2011;11(1):59–62.
  • Yadollahi MM, Benli A, Demirboğa R. The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Construction and Building Materials. 2015;94:767–74.

Atık Mineral Yünlerin Jeopolimer Üretiminde Kullanımının İncelenmesi

Yıl 2024, Cilt: 13 Sayı: 4, 192 - 198, 30.12.2024
https://doi.org/10.46810/tdfd.1569404

Öz

Mineral yünler inşaat sektöründe yaygın olarak kullanılan yalıtım malzemeleridir; ancak geri dönüştürülemeyen yapıları çevresel bir sorun teşkil etmektedir. Bu çalışmada, mineral yün atıkları toz haline getirilip Na₂SiO₃ ve NaOH çözeltileri ile aktifleştirilerek sürdürülebilir bir şekilde değerlendirilmiştir. Üretim sürecinde farklı Na₂SiO₃ silika modülü oranları (2.0, 2.5 ve 3.0) incelenmiş ve optimum oran 2.5 olarak belirlenmiştir. Numunelerin mekanik özellikleri çeşitli sıcaklıklarda (25°C, 50°C, 75°C ve 100°C) kürlendikten sonra değerlendirilmiş ve en yüksek basınç dayanımı 59,2 MPa ile cam yünü numunelerinde gözlenmiştir. Termal kürleme, cam yünü bazlı numuneler için özellikle 75°C'de basınç dayanımını artırmıştır. Ayrıca, numunelerin basınç dayanımları 90 günlük bir kürleme süresinden sonra stabilize olmuştur. Bu bulgular, mineral yün atıklarının yüksek performanslı malzemelere geri dönüştürülmesinin uygulanabilirliğini göstermekte ve termal kürlemenin mekanik özelliklerin geliştirilmesindeki önemli rolünü vurgulamaktadır.

Kaynakça

  • Benhelal E, Zahedi G, Shamsaei E, Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod. 2013;51:142–61.
  • Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim. 1991;37(8):1633–56.
  • Davidovits J. Geopolymer Chemistry and Applications. Saint-Quentin, France: Geopolymer Institute; 2011.
  • Yip CK, Lukey GC, Provis JL, van Deventer JSJ. Effect of calcium silicate sources on geopolymerisation. Cem Concr Res. 2008;38(4):554–64.
  • Diaz E, Allouche E, Eklund S. Factors affecting the suitability of fly ash as source material for geopolymers. Fuel. 2010;89(5):992–6.
  • Nath P, Sarker PK. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater. 2014;66:163–71.
  • Thokchom S, Dutta D, Ghosh S. Effect of incorporating silica fume in fly ash geopolymers. World Acad Sci Eng Technol. 2011;60:243–7.
  • Ryu GS, Lee YB, Koh KT, Chung YS. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater. 2013;47:409–18.
  • Fu Y, Cai L, Wang Y. Freeze–thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr Build Mater. 2011;25(7):3144–8.
  • Pilehvar S, Sanfelix SG, Szczotok AM, Rodríguez JF, Valentini L, Lanzón M, et al. Effect of temperature on geopolymer and Portland cement composites modified with micro-encapsulated phase change materials. Constr Build Mater. 2020;252:119055.
  • Giro-Paloma J, Martínez M, Cabeza LF, Fernández AI. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew Sustain Energy Rev. 2016;53:1059–75.
  • Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag. 2004;45(2):263–75.
  • Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev. 2007;11(6):1146–66.
  • Duxson P, Provis JL, Lukey GC, Van Deventer JSJ. The role of inorganic polymer technology in the development of ‘green concrete’. Cem Concr Res. 2007;37(12):1590–7.
  • Schneider M, Romer M, Tschudin M, Bolio H. Sustainable cement production—present and future. Cem Concr Res. 2011;41(7):642–50.
  • Part WK, Ramli M, Cheah CB. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater. 2015;77:370–95.
  • Singh B, Ishwarya G, Gupta M, Bhattacharyya S. Geopolymer concrete: A review of some recent developments. Constr Build Mater. 2015;85:78–90.
  • Karakoç MB, Türkmen İ, Maraş MM, Kantarci F, Demirboğa R, Toprak MU, et al. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater. 2014;72:283–92.
  • Karthik A, Sudalaimani K, Kumar CV. Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self-curing bio-geopolymer concrete. Constr Build Mater. 2017;149:338–49.
  • Yaseri S, Hajiaghaei G, Mohammadi F, Mahdikhani M, Farokhzad R. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Constr Build Mater. 2017;157:534–45.
  • Cao J, Chung D. Damage evolution during freeze–thaw cycling of cement mortar, studied by electrical resistivity measurement. Cem Concr Res. 2002;32(10):1657–61.
  • Marzouk H, Jiang D. Effects of freezing and thawing on the tension properties of high-strength concrete. ACI Mater J. 1994;91(6):577–86.
  • Jacobsen S, Sellevold EJ. Self-healing of high-strength concrete after deterioration by freeze/thaw. Cem Concr Res. 1996;26(1):55–62.
  • Yazıcı H. The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete. Constr Build Mater. 2008;22(4):456–62.
  • Allahverdi A, Abadi MM, Hossain KMA, Lachemi M. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cem Concr Res Technol. 2014;103:107–14.
  • Slavik R, Bednarik V, Vondruska M, Nemec A. Preparation of geopolymer from fluidized bed combustion bottom ash. J Mater Process Technol. 2008;200(1-3):265–70.
  • Jo B-W, Park S-K, Park J-B. Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA). Cem Concr Compos. 2007;29(2):128–35.
  • Müller A, Leydolph B, Stanelle K. Recycling mineral wool waste: technologies for the conversion of the fiber structure, Part 1. Int J Miner Process. 2009;58(6):378–81.
  • Väntsi O, Kärki T. Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods. J Mater Cycles Waste Manag. 2014;16(1):62–72.
  • Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M. One-part alkali-activated materials: A review. Cem Concr Res. 2018;103:21–34.
  • Yliniemi J, Luukkonen T, Kaiser A, Illikainen M, editors. Mineral wool waste-based geopolymers. IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2019.
  • Yliniemi J, Kinnunen P, Karinkanta P, Illikainen M. Utilization of mineral wools as alkali-activated material precursor. Materials. 2016;9(5):312.
  • Yliniemi J, Laitinen O, Kinnunen P, Illikainen M. Pulverization of fibrous mineral wool waste. J Mater Cycles Waste Manag. 2018;20(2):1248–56.
  • Kinnunen P, Yliniemi J, Talling B, Illikainen M. Rockwool waste in fly ash geopolymer composites. J Mater Cycles Waste Manag. 2017;19(3):1220–7.
  • Weil M, Dombrowski K, Buchwald A. Life-cycle analysis of geopolymers. In: Geopolymers. Elsevier; 2009. p. 194–210.
  • Li Z, Ding Z, Zhang Y, editors. Development of sustainable cementitious materials. Proceedings of International Workshop on Sustainable Development and Concrete Technology; Beijing, China; 2004.
  • Komnitsas KA. Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Eng. 2011;21:1023–32.
  • Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr Build Mater. 2008;22(7):1315–22.
  • Kong DL, Sanjayan JG. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res. 2010;40(2):334–9.
  • Ünsal Sağlık A. Alkali-silica reactivity and activation of ground perlite-containing cementitious mixtures [dissertation]. Middle East Technical University; 2009.
  • Alahverdi A, Mehrpour K, Najafikani E. Taftan pozzolan-based geopolymer cement. Cem Concr Res. 2008.
  • Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem Concr Res. 2005;35(6):1224–32.
  • Bakharev T. Resistance of geopolymer materials to acid attack. Cem Concr Res. 2005;35(4):658–73.
  • Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res. 2005;35(6):1233–46.
  • Thokchom S, Ghosh P, Ghosh S. Acid resistance of fly ash based geopolymer mortars. Int J Recent Trends Eng. 2009;1(6):36–40.
  • Thokchom S, Ghosh P, Ghosh S. Resistance of fly ash based geopolymer mortars in sulfuric acid. ARPN J Eng Appl Sci. 2009;4(1):65–70.
  • Atiş CD, Bilim C, Çelik Ö, Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–55.
  • Komljenović M, Baščarević Z, Bradić V. Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater. 2010;181(1-3):35–42.
  • Anuar K, Ridzuan A, Ismail S. Strength characteristic of geopolymer concrete containing recycled concrete aggregate. Int J Civ Environ Eng. 2011;11(1):59–62.
  • Yadollahi MM, Benli A, Demirboğa R. The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Construction and Building Materials. 2015;94:767–74.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temiz Üretim Teknolojileri
Bölüm Makaleler
Yazarlar

Mehrzad Mohabbı 0000-0001-8584-1658

Mehmet Nuri Kolak 0000-0003-3533-3422

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 17 Ekim 2024
Kabul Tarihi 3 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Mohabbı, M., & Kolak, M. N. (2024). Investigation of Waste Mineral Wool in Geopolymer Production. Türk Doğa Ve Fen Dergisi, 13(4), 192-198. https://doi.org/10.46810/tdfd.1569404
AMA Mohabbı M, Kolak MN. Investigation of Waste Mineral Wool in Geopolymer Production. TDFD. Aralık 2024;13(4):192-198. doi:10.46810/tdfd.1569404
Chicago Mohabbı, Mehrzad, ve Mehmet Nuri Kolak. “Investigation of Waste Mineral Wool in Geopolymer Production”. Türk Doğa Ve Fen Dergisi 13, sy. 4 (Aralık 2024): 192-98. https://doi.org/10.46810/tdfd.1569404.
EndNote Mohabbı M, Kolak MN (01 Aralık 2024) Investigation of Waste Mineral Wool in Geopolymer Production. Türk Doğa ve Fen Dergisi 13 4 192–198.
IEEE M. Mohabbı ve M. N. Kolak, “Investigation of Waste Mineral Wool in Geopolymer Production”, TDFD, c. 13, sy. 4, ss. 192–198, 2024, doi: 10.46810/tdfd.1569404.
ISNAD Mohabbı, Mehrzad - Kolak, Mehmet Nuri. “Investigation of Waste Mineral Wool in Geopolymer Production”. Türk Doğa ve Fen Dergisi 13/4 (Aralık 2024), 192-198. https://doi.org/10.46810/tdfd.1569404.
JAMA Mohabbı M, Kolak MN. Investigation of Waste Mineral Wool in Geopolymer Production. TDFD. 2024;13:192–198.
MLA Mohabbı, Mehrzad ve Mehmet Nuri Kolak. “Investigation of Waste Mineral Wool in Geopolymer Production”. Türk Doğa Ve Fen Dergisi, c. 13, sy. 4, 2024, ss. 192-8, doi:10.46810/tdfd.1569404.
Vancouver Mohabbı M, Kolak MN. Investigation of Waste Mineral Wool in Geopolymer Production. TDFD. 2024;13(4):192-8.