Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 14 Sayı: 1, 65 - 76, 26.03.2025
https://doi.org/10.46810/tdfd.1539065

Öz

Etik Beyan

Çalışmamız için Etik dışı herhangi bir durum söz konusu değildir.

Destekleyen Kurum

Yüzüncü Yıl Üniversitesi Bilimsel Araştırmalar Proje Birimi

Teşekkür

Yüzüncü Yıl Üniversitesi Bilimsel Araştırmalar Proje Birimine desteklerinden dolayı Teşşekkür ediyoruz.

Kaynakça

  • Shao, H. B., Chu, L. Y., Jaleel, C. A., & Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes rendus biologies, 331(3), 215-225.
  • Kalaji, M. H., & Pietkiewicz, S. (1993). Salinity effects on plant growth and other physiological processes.
  • Akıncı, S. (1997). Physiological responses to water stress by Cucumis sativus L. and related species (Doctoral dissertation, University of Sheffield).
  • Akinremi, O. O., Janzen, H. H., Lemke, R. L., & Larney, F. J. (2000). Response of canola, wheat and green beans to leonardite additions. Canadian Journal of Soil Science, 80(3), 437-443.
  • Tunçtürk, M., Tunçtürk, R., Oral, E., & Baran, İ. (2020). Humik asitin baklada (Vicia faba L.) tuz (NaCl) stresinin azaltılması üzerine etkisi. Journal of the Institute of Science and Technology, 10(3), 2168-2179.
  • Lichtenthaler, H. K. (1996). Vegetation stress: an introduction to the stress concept in plants. Journal of plant physiology, 148(1-2), 4-14.
  • Larcher, W. (2003). Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Science & Business Media.
  • Blum, A., & Jordan, W. R. (1985). Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences, 2(3), 199-238.
  • Botella, M. A., Rosado, A., Bressan, R. A., & Hasegawa, P. M. (2005). Plant adaptive responses to salinity stress. Plant abiotic stress, 37-70.
  • Munsuz, N., Çaycı, G., & Sözüdoğru Ok, S. (2001). Toprak Islahı ve Düzenleyiciler (Tuzlu ve Alkali Toprakların Islahı). Ankara Üniv. Ziraat Fak. Yayınları, (1518).
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59(1), 651-681.
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11-34.
  • Pessarakli, M., & Szabolcs, I. (2019). Soil salinity and sodicity as particular plant/crop stress factors. In Handbook of Plant and Crop Stress, Fourth Edition (pp. 3-21). CRC press.
  • Doğru, A., & Canavar, S. (2020). Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri. Academic Platform-Journal of Engineering and Science, 8(1), 155-174.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety, 60(3), 324-349.
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in enzymology, 428, 419-438.
  • Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of plant nutrition and soil science, 168(4), 541-549.
  • Türkhan, A., Kaya, E. D., Sarı, S., Tohumcu, F., & Özden, E. (2021). Farklı tuzluluk sınıfındaki topraklarda yetiştirilen domates tohumlarında bazı antioksidan enzim aktivitelerinin belirlenmesi. Journal of the Institute of Science and Technology, 11(özel sayı), 3406-3415.
  • Hong, C. Y., Chao, Y. Y., Yang, M. Y., Cho, S. C., & Kao, C. H. (2009). Na+ but not Cl− or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlings. Journal of Plant Physiology, 166(15), 1598-1606.
  • Cramer, G. R., & Nowak, R. S. (1992). Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt‐stressed barley. Physiologia plantarum, 84(4), 600-605.
  • Roberts, J. K., Linker, C. S., Benoit, A. G., Jardetzky, O., & Nieman, R. H. (1984). Salt stimulation of phosphate uptake in maize root tips studied by 31P nuclear magnetic resonance. Plant Physiology, 75(4), 947-950.
  • Litifi, A., Beek, J. G., & Van-de-Beek, J. G. (1992). Capsicum-Newsletter. Special Issue, 51-56, Eucarpia VIII th. In Meeting on Genetics and Breeding on Capsicum and Egg Plant, Rome, Italy (pp. 7-10).
  • Ashraf, M., Zafar, Z. U., & Cheema, Z. A. (1994). Effect of low potassium regimes on some salt-and drought-tolerant lines of pearl millet. Phyton, 34(2), 219-227.
  • Gong, H. J., Chen, K. M., Chen, G. C., Wang, S. M., & Zhang, C. L. (2003). Effects of silicon on growth of wheat under drought. Journal of plant nutrition, 26(5), 1055-1063.
  • Romero-Aranda, M. R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of plant physiology, 163(8), 847-855.
  • Anderson, D. L., Snyder, G. H., & Martin, F. G. (1991). Multi‐year response of sugarcane to calcium silicate slag on Everglades Histosols. Agronomy Journal, 83(5), 870-874.
  • Rafi, M. M., Epstein, E., & Falk, R. H. (1997). Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L). Journal of plant physiology, 151(4), 497-501.
  • Liang, Y., Chen, Q. I. N., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgareL.). Journal of plant physiology, 160(10), 1157-1164.
  • Liang, Y., Zhu, J., Li, Z., Chu, G., Ding, Y., Zhang, J., & Sun, W. (2008). Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environmental and Experimental Botany, 64(3), 286-294.
  • Ashraf, M., Rahmatullah, Afzal, M., Ahmed, R., Mujeeb, F., Sarwar, A., & Ali, L. (2010). Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil, 326, 381-391.
  • Ali, A., Tahir, M., Amin, M., Basra, S. M. A., Maqbool, M., & Lee, D. (2013). Si induced stress tolerance in wheat (Triticum aestivum L.) hydroponically grown under water deficit conditions. Bulgarian Journal of Agricultural Science, 19(5), 952-958.
  • Gurmani, A. R., Bano, A., Najeeb, U., Zhang, J., Khan, S. U., & Flowers, T. J. (2013). Exogenously applied silicate and abscisic acid ameliorates the growth of salinity stressed wheat ('Triticum aestivum'L) seedlings through Na+ exclusion. Australian Journal of Crop Science, 7(8), 1123-1130.
  • Kardoni, F. S. J. S. M., Mosavi, S. S., Parande, S., & Torbaghan, M. E. (2013). Effect of salinity stress and silicon application on yield and component yield of faba bean (Vicia faba).
  • Rohanipoor, A., Norouzi, M., Moezzi, A., & Hassibi, P. (2013). Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. Journal of Biological and Environmental Sciences, 7(20).
  • Jackson, M. (1958). Soil chemical analysis prentice Hall. Inc., Englewood Cliffs, NJ, 498(1958), 183-204.
  • Hızalan, E., & Ünal, H. (1966). Topraklarda önemli kimyasal analizler. AÜ Ziraat Fakültesi Yayınları, 278, 5-7.
  • Kacar, B. (1994). Bitki ve toprağın kimyasal analizleri. Ankara Ünİversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı.
  • Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil science, 63(4), 251-264.
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
  • Thomas, G., (1982). Exchangeable cations. In ‘Methods of soil analysis. Part 2. Chemical and microbiological properties’.(Eds AL Page, RH Miller, DR Keeney) pp. 159–165. Soil Science Society of America, Inc.: Madison, WI, 1982.
  • Cakmak, I., Strbac, D., & Marschner, H. (1993). Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of experimental botany, 44(1), 127-132.
  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2), 309-314.
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., & Gürbüz, F. (1987). Araştırma ve deneme metotları. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 1021, 1-381.
  • Karakullukçu, E. (2008). Bazı nohut (Cicer arietinum L.) çeşitlerinin tuza toleranslarının belirlenmesi. Journal of Agricultural Sciences, 14(04).
  • Yagmur, M., Kaydan, D., & Okut, N. (2006). Effects of potassium application on photosynthetic pigments, osmotic potential, kþ/naþ ratio and plant growth of barley under salinity. J. Agric. Sci, 12(2), 188-194.
  • Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z., & Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of plant physiology, 165(14), 1455-1465.
  • Ali, A., Basra, S. M., Iqbal, J., Hussain, S., Subhani, M. N., Sarwar, M., & Haji, A. (2012). Silicon mediated biochemical changes in wheat under salinized and non-salinzed solution cultures. African Journal of Biotechnology, 11(3), 606-615.
  • Ahmad, B. (2014). Interactive effects of silicon and potassium nitrate in improving salt tolerance of wheat. Journal of Integrative Agriculture, 13(9), 1889-1899.
  • Clarkson, D. T., & Hanson, J. B. (1980). The mineral nutrition of higher plants.
  • Kuşvuran, Ş., Yaşar, F., Abak, K., & Ellialtıoğlu, Ş. (2008). Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cucumis sp.'nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler. Yuzuncu Yıl University Journal of Agricultural Sciences, 18(1), 13-20.
  • Erdal, İ., Türkmen, Ö., & Yıldız, M. (2000). Tuz stresi altında yetiştirilen hıyar (Cucumis sativus L.) fidelerinin gelişimi ve kimi besin maddeleri içeriğindeki değişimler üzerine potasyumlu gübrelemenin etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 10(1), 25-29.
  • Shavrukov, Y. (2013). Salt stress or salt shock: which genes are we studying?. Journal of Experimental Botany, 64(1), 119-127.
  • Öner, F., Özkorkmaz, F., & Yilmaz, N. (2018). Tuz stresi altında gibberellik asit uygulamalarının yulafta bazı çimlenme parametreleri üzerine etkisi. International Journal of Agricultural and Natural Sciences, 1(1), 33-
  • Tiryaki, İ. (2018). Bazı tarla bitkilerinin tuz stresine gösterdikleri adaptasyon mekanizmaları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(5), 800-808.
  • Karanlik, S. (2001). Değişik buğday genotiplerinde tuz stresine dayanıklılık ve dayanıklılığın fizyolojik nedenlerinin araştırılması.
  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant physiology, 98(4), 1222-1227.
  • Gossett, D. R., Millhollon, E. P., & Lucas, M. C. (1994). Antioxidant response to NaCl stress in salt‐tolerant and salt‐sensitive cultivars of cotton. Crop science, 34(3), 706-714.
  • Cakmak, I. (1997). Role of potassium in protecting higher plants against photo-oxidative damage. Food security in the WANA region, the essential need for balanced fertilization, International Potash Institute, Basel Switzerland, 345-352.
  • Heidari, M., & Jamshidi, P. (2011). Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet. Agricultural Sciences in China, 10(2), 228-237.
  • Al-Whaibi, M. H., Siddiqui, M. H., & Basalah, M. O. (2012). Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma, 249, 769-778.
  • Zhu, Y. X., Gong, H. J., & Yin, J. L. (2019). Role of silicon in mediating salt tolerance in plants: a review. Plants, 8(6), 147.
  • Zhu, Y., Guo, J., Feng, R., Jia, J., Han, W., & Gong, H. (2016). The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. Plant and Soil, 406, 231-249.
  • Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-53

Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum aestivum L.) Plant Exposed to Salt Stress

Yıl 2025, Cilt: 14 Sayı: 1, 65 - 76, 26.03.2025
https://doi.org/10.46810/tdfd.1539065

Öz

The problem of salinity in our soils is increasing day by day. This problem has become even more important with global climate change. It is the plants that are most affected by this problem. Salinity affects many metabolic activities in a very complex way by causing stress in plants. Reactive oxygen species, especially formed by salt stress, cause serious damage to plant cells. They use antioxidative enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) to protect the plant from this stress. The aim of this research is to determine the effects of potassium and silicon applications on some antioxidant enzyme activities in wheat plant in salty conditions. In the experiment conducted under potted conditions, increasing doses of salt (0 and 100 mM NaCl), potassium (0, 150 and 300 mg/kg K) and silicon (0, 75 and 150 mg/kg Si) were applied to the wheat plant. According to the results obtained, SOD activity increased in 100 mM NaCl, 150 mg/kg K 0 mg/kg and 300 mg/kg Si applications. The effect of salt application on CAT activity was not found to be significant compared to control. APX activity was generally increased with the addition of salt. However, the increase in APX activity due to 100 mM NaCl administration decreased significantly with increasing silicon doses when 150 mg/kg potassium administration was kept constant. This situation shows that K and Si applications can be beneficial in reducing salt stress.

Kaynakça

  • Shao, H. B., Chu, L. Y., Jaleel, C. A., & Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes rendus biologies, 331(3), 215-225.
  • Kalaji, M. H., & Pietkiewicz, S. (1993). Salinity effects on plant growth and other physiological processes.
  • Akıncı, S. (1997). Physiological responses to water stress by Cucumis sativus L. and related species (Doctoral dissertation, University of Sheffield).
  • Akinremi, O. O., Janzen, H. H., Lemke, R. L., & Larney, F. J. (2000). Response of canola, wheat and green beans to leonardite additions. Canadian Journal of Soil Science, 80(3), 437-443.
  • Tunçtürk, M., Tunçtürk, R., Oral, E., & Baran, İ. (2020). Humik asitin baklada (Vicia faba L.) tuz (NaCl) stresinin azaltılması üzerine etkisi. Journal of the Institute of Science and Technology, 10(3), 2168-2179.
  • Lichtenthaler, H. K. (1996). Vegetation stress: an introduction to the stress concept in plants. Journal of plant physiology, 148(1-2), 4-14.
  • Larcher, W. (2003). Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Science & Business Media.
  • Blum, A., & Jordan, W. R. (1985). Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences, 2(3), 199-238.
  • Botella, M. A., Rosado, A., Bressan, R. A., & Hasegawa, P. M. (2005). Plant adaptive responses to salinity stress. Plant abiotic stress, 37-70.
  • Munsuz, N., Çaycı, G., & Sözüdoğru Ok, S. (2001). Toprak Islahı ve Düzenleyiciler (Tuzlu ve Alkali Toprakların Islahı). Ankara Üniv. Ziraat Fak. Yayınları, (1518).
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59(1), 651-681.
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11-34.
  • Pessarakli, M., & Szabolcs, I. (2019). Soil salinity and sodicity as particular plant/crop stress factors. In Handbook of Plant and Crop Stress, Fourth Edition (pp. 3-21). CRC press.
  • Doğru, A., & Canavar, S. (2020). Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri. Academic Platform-Journal of Engineering and Science, 8(1), 155-174.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety, 60(3), 324-349.
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in enzymology, 428, 419-438.
  • Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of plant nutrition and soil science, 168(4), 541-549.
  • Türkhan, A., Kaya, E. D., Sarı, S., Tohumcu, F., & Özden, E. (2021). Farklı tuzluluk sınıfındaki topraklarda yetiştirilen domates tohumlarında bazı antioksidan enzim aktivitelerinin belirlenmesi. Journal of the Institute of Science and Technology, 11(özel sayı), 3406-3415.
  • Hong, C. Y., Chao, Y. Y., Yang, M. Y., Cho, S. C., & Kao, C. H. (2009). Na+ but not Cl− or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlings. Journal of Plant Physiology, 166(15), 1598-1606.
  • Cramer, G. R., & Nowak, R. S. (1992). Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt‐stressed barley. Physiologia plantarum, 84(4), 600-605.
  • Roberts, J. K., Linker, C. S., Benoit, A. G., Jardetzky, O., & Nieman, R. H. (1984). Salt stimulation of phosphate uptake in maize root tips studied by 31P nuclear magnetic resonance. Plant Physiology, 75(4), 947-950.
  • Litifi, A., Beek, J. G., & Van-de-Beek, J. G. (1992). Capsicum-Newsletter. Special Issue, 51-56, Eucarpia VIII th. In Meeting on Genetics and Breeding on Capsicum and Egg Plant, Rome, Italy (pp. 7-10).
  • Ashraf, M., Zafar, Z. U., & Cheema, Z. A. (1994). Effect of low potassium regimes on some salt-and drought-tolerant lines of pearl millet. Phyton, 34(2), 219-227.
  • Gong, H. J., Chen, K. M., Chen, G. C., Wang, S. M., & Zhang, C. L. (2003). Effects of silicon on growth of wheat under drought. Journal of plant nutrition, 26(5), 1055-1063.
  • Romero-Aranda, M. R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of plant physiology, 163(8), 847-855.
  • Anderson, D. L., Snyder, G. H., & Martin, F. G. (1991). Multi‐year response of sugarcane to calcium silicate slag on Everglades Histosols. Agronomy Journal, 83(5), 870-874.
  • Rafi, M. M., Epstein, E., & Falk, R. H. (1997). Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L). Journal of plant physiology, 151(4), 497-501.
  • Liang, Y., Chen, Q. I. N., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgareL.). Journal of plant physiology, 160(10), 1157-1164.
  • Liang, Y., Zhu, J., Li, Z., Chu, G., Ding, Y., Zhang, J., & Sun, W. (2008). Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environmental and Experimental Botany, 64(3), 286-294.
  • Ashraf, M., Rahmatullah, Afzal, M., Ahmed, R., Mujeeb, F., Sarwar, A., & Ali, L. (2010). Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil, 326, 381-391.
  • Ali, A., Tahir, M., Amin, M., Basra, S. M. A., Maqbool, M., & Lee, D. (2013). Si induced stress tolerance in wheat (Triticum aestivum L.) hydroponically grown under water deficit conditions. Bulgarian Journal of Agricultural Science, 19(5), 952-958.
  • Gurmani, A. R., Bano, A., Najeeb, U., Zhang, J., Khan, S. U., & Flowers, T. J. (2013). Exogenously applied silicate and abscisic acid ameliorates the growth of salinity stressed wheat ('Triticum aestivum'L) seedlings through Na+ exclusion. Australian Journal of Crop Science, 7(8), 1123-1130.
  • Kardoni, F. S. J. S. M., Mosavi, S. S., Parande, S., & Torbaghan, M. E. (2013). Effect of salinity stress and silicon application on yield and component yield of faba bean (Vicia faba).
  • Rohanipoor, A., Norouzi, M., Moezzi, A., & Hassibi, P. (2013). Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. Journal of Biological and Environmental Sciences, 7(20).
  • Jackson, M. (1958). Soil chemical analysis prentice Hall. Inc., Englewood Cliffs, NJ, 498(1958), 183-204.
  • Hızalan, E., & Ünal, H. (1966). Topraklarda önemli kimyasal analizler. AÜ Ziraat Fakültesi Yayınları, 278, 5-7.
  • Kacar, B. (1994). Bitki ve toprağın kimyasal analizleri. Ankara Ünİversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı.
  • Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil science, 63(4), 251-264.
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
  • Thomas, G., (1982). Exchangeable cations. In ‘Methods of soil analysis. Part 2. Chemical and microbiological properties’.(Eds AL Page, RH Miller, DR Keeney) pp. 159–165. Soil Science Society of America, Inc.: Madison, WI, 1982.
  • Cakmak, I., Strbac, D., & Marschner, H. (1993). Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of experimental botany, 44(1), 127-132.
  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2), 309-314.
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., & Gürbüz, F. (1987). Araştırma ve deneme metotları. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 1021, 1-381.
  • Karakullukçu, E. (2008). Bazı nohut (Cicer arietinum L.) çeşitlerinin tuza toleranslarının belirlenmesi. Journal of Agricultural Sciences, 14(04).
  • Yagmur, M., Kaydan, D., & Okut, N. (2006). Effects of potassium application on photosynthetic pigments, osmotic potential, kþ/naþ ratio and plant growth of barley under salinity. J. Agric. Sci, 12(2), 188-194.
  • Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z., & Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of plant physiology, 165(14), 1455-1465.
  • Ali, A., Basra, S. M., Iqbal, J., Hussain, S., Subhani, M. N., Sarwar, M., & Haji, A. (2012). Silicon mediated biochemical changes in wheat under salinized and non-salinzed solution cultures. African Journal of Biotechnology, 11(3), 606-615.
  • Ahmad, B. (2014). Interactive effects of silicon and potassium nitrate in improving salt tolerance of wheat. Journal of Integrative Agriculture, 13(9), 1889-1899.
  • Clarkson, D. T., & Hanson, J. B. (1980). The mineral nutrition of higher plants.
  • Kuşvuran, Ş., Yaşar, F., Abak, K., & Ellialtıoğlu, Ş. (2008). Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cucumis sp.'nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler. Yuzuncu Yıl University Journal of Agricultural Sciences, 18(1), 13-20.
  • Erdal, İ., Türkmen, Ö., & Yıldız, M. (2000). Tuz stresi altında yetiştirilen hıyar (Cucumis sativus L.) fidelerinin gelişimi ve kimi besin maddeleri içeriğindeki değişimler üzerine potasyumlu gübrelemenin etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 10(1), 25-29.
  • Shavrukov, Y. (2013). Salt stress or salt shock: which genes are we studying?. Journal of Experimental Botany, 64(1), 119-127.
  • Öner, F., Özkorkmaz, F., & Yilmaz, N. (2018). Tuz stresi altında gibberellik asit uygulamalarının yulafta bazı çimlenme parametreleri üzerine etkisi. International Journal of Agricultural and Natural Sciences, 1(1), 33-
  • Tiryaki, İ. (2018). Bazı tarla bitkilerinin tuz stresine gösterdikleri adaptasyon mekanizmaları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(5), 800-808.
  • Karanlik, S. (2001). Değişik buğday genotiplerinde tuz stresine dayanıklılık ve dayanıklılığın fizyolojik nedenlerinin araştırılması.
  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant physiology, 98(4), 1222-1227.
  • Gossett, D. R., Millhollon, E. P., & Lucas, M. C. (1994). Antioxidant response to NaCl stress in salt‐tolerant and salt‐sensitive cultivars of cotton. Crop science, 34(3), 706-714.
  • Cakmak, I. (1997). Role of potassium in protecting higher plants against photo-oxidative damage. Food security in the WANA region, the essential need for balanced fertilization, International Potash Institute, Basel Switzerland, 345-352.
  • Heidari, M., & Jamshidi, P. (2011). Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet. Agricultural Sciences in China, 10(2), 228-237.
  • Al-Whaibi, M. H., Siddiqui, M. H., & Basalah, M. O. (2012). Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma, 249, 769-778.
  • Zhu, Y. X., Gong, H. J., & Yin, J. L. (2019). Role of silicon in mediating salt tolerance in plants: a review. Plants, 8(6), 147.
  • Zhu, Y., Guo, J., Feng, R., Jia, J., Han, W., & Gong, H. (2016). The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. Plant and Soil, 406, 231-249.
  • Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-53
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Orhan İnik 0000-0003-1473-1392

Mehmet Ali Bozkurt 0000-0003-3923-857X

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 29 Ağustos 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA İnik, O., & Bozkurt, M. A. (2025). Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum aestivum L.) Plant Exposed to Salt Stress. Türk Doğa Ve Fen Dergisi, 14(1), 65-76. https://doi.org/10.46810/tdfd.1539065
AMA İnik O, Bozkurt MA. Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum aestivum L.) Plant Exposed to Salt Stress. TDFD. Mart 2025;14(1):65-76. doi:10.46810/tdfd.1539065
Chicago İnik, Orhan, ve Mehmet Ali Bozkurt. “Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum Aestivum L.) Plant Exposed to Salt Stress”. Türk Doğa Ve Fen Dergisi 14, sy. 1 (Mart 2025): 65-76. https://doi.org/10.46810/tdfd.1539065.
EndNote İnik O, Bozkurt MA (01 Mart 2025) Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum aestivum L.) Plant Exposed to Salt Stress. Türk Doğa ve Fen Dergisi 14 1 65–76.
IEEE O. İnik ve M. A. Bozkurt, “Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum aestivum L.) Plant Exposed to Salt Stress”, TDFD, c. 14, sy. 1, ss. 65–76, 2025, doi: 10.46810/tdfd.1539065.
ISNAD İnik, Orhan - Bozkurt, Mehmet Ali. “Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum Aestivum L.) Plant Exposed to Salt Stress”. Türk Doğa ve Fen Dergisi 14/1 (Mart 2025), 65-76. https://doi.org/10.46810/tdfd.1539065.
JAMA İnik O, Bozkurt MA. Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum aestivum L.) Plant Exposed to Salt Stress. TDFD. 2025;14:65–76.
MLA İnik, Orhan ve Mehmet Ali Bozkurt. “Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum Aestivum L.) Plant Exposed to Salt Stress”. Türk Doğa Ve Fen Dergisi, c. 14, sy. 1, 2025, ss. 65-76, doi:10.46810/tdfd.1539065.
Vancouver İnik O, Bozkurt MA. Effect of K and Si Applications on Plant Development, Na and K Content and Some Antioxidant (SOD, CAT, APX) Activities of Wheat (Triticum aestivum L.) Plant Exposed to Salt Stress. TDFD. 2025;14(1):65-76.