Araştırma Makalesi
BibTex RIS Kaynak Göster

Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients

Yıl 2025, Cilt: 14 Sayı: 3, 10 - 29, 26.09.2025
https://doi.org/10.46810/tdfd.1633095

Öz

A novel analytical method, termed the Variable Coefficient Second Degree Generalized Abel Equation Method, is presented in this paper. It has been specifically developed to address the complexities of the Gilson Pickering equation—an important nonlinear partial differential equation encountered in various physical applications. This equation is recognized as a general case of several significant nonlinear partial differential equations, including the Fornberg Whitham, Rosenau Hyman, and Fuchssteiner-Fokas-Camassa-Holm equations. Unlike conventional approaches, which are typically based on constant coefficient ordinary differential equations (ODEs) or auxiliary equations, a unique framework based on variable coefficient ODEs integrated within a subequation structure is introduced by this method.. By applying the method to the Gilson Pickering equation, new exact analytical solutions are derived. The correctness of the technique is validated, and its superior efficiency and robustness are highlighted through these results. The intricate dynamics of the equation are effectively captured, demonstrating the method’s suitability for modeling phenomena in fluid dynamics, nonlinear optics, and wave propagation. Furthermore, the potential application of the method to a broader class of nonlinear partial differential equations across mathematical physics is implied by its generalizability. The importance of advancing analytical tools to better understand and resolve complex physical systems is emphasized by the findings, thereby marking a significant contribution to the analytical study of nonlinear differential equations. Ultimately, an expansion of the repertoire of solution strategies available to researchers in applied mathematics and theoretical physics is achieved through this work.

Kaynakça

  • X. Wang, J. Li, J. Li, A deep learning based numerical pde method for option pricing, Computational economics 62 (1) (2023) 149–164.
  • J. M. Taylor, D. Pardo, I. Muga, A deep fourier residual method for solving pdes using neural networks, Computer Methods in Applied Mechanics and Engineering 405 (2023) 115850.
  • M. S. Hashemi, E. Darvishi, D. Baleanu, A geometric approach for solving the densitydependent diffusion nagumo equation, Advances in Difference Equations 2016 (2016) 1–13.
  • S. Abbasbandy, M. S. Hashemi, Group preserving scheme for the cauchy problem of the laplace equation, Engineering analysis with boundary elements 35 (8) (2011) 1003–1009.
  • M. S. Hashemi, Numerical study of the onedimensional coupled nonlinear sine-gordon equations by a novel geometric meshless method, Engineering with Computers 37 (4) (2021) 3397–3407.
  • S. A. Durmus, N. Ozdemir, A. Secer, M. Ozisik, M. Bayram, Bright soliton of the third-order nonlinear schr¨odinger equation with power law of self-phase modulation in the absence of chromatic dispersion, Optical and Quantum Electronics 56 (5) (2024) 1–17.
  • W. B. Rabie, H. M. Ahmed, M. S. Hashemi, M. Mirzazadeh, M. Bayram, Generating optical solitons in the extended (3+ 1)-dimensional nonlinear kudryashov’s equation using the extended f-expansion method, Optical and Quantum Electronics 56 (5) (2024) 894.
  • K. Hosseini, E. Hincal, O. Obi, M. Mirzazadeh, Solitary waves of coupled nonlinear schr¨odinger equations: a generalized method, Optical and Quantum Electronics 55 (7) (2023) 599.
  • K. Hosseini, K. Sadri, M. Mirzazadeh, A. Ahmadian, Y.-M. Chu, S. Salahshour, Reliable methods to look for analytical and numerical solutions of a nonlinear differential equation arising in heat transfer with the conformable derivative, Mathematical Methods in the Applied Sciences 46 (10) (2023) 11342–11354.
  • M. Soliman, H. M. Ahmed, N. Badra, I. Samir, Effects of fractional derivative on fiber optical solitons of (2+ 1) perturbed nonlinear schr¨odinger equation using improved modified extended tanh-function method, Optical and Quantum Electronics 56 (5) (2024) 1–15.
  • I. Samir, H. M. Ahmed, Extracting stochastic solutions for complex ginzburg–landau model with chromatic dispersion and kerr law nonlinearity using improved modified extended tanh technique, Optical and Quantum Electronics 56 (5) (2024) 824.
  • C. Gilson, A. Pickering, Factorization and painlev´e analysis of a class of nonlinear thirdorder partial differential equations, Journal of Physics A: Mathematical and General 28 (10) (1995) 2871.
  • Y. Kai, Y. Li, L. Huang, Topological properties and wave structures of Gilson–Pickering equation, Chaos, Solitons & Fractals 157 (2022) 111899.
  • A. A. Elmandouh, M. E. Elbrolosy, New traveling wave solutions for Gilson–Pickering equation in plasma via bifurcation analysis and direct method, Mathematical Methods in the Applied Sciences (2022).
  • F. Zabihi, M. Saffarian, A not-a-knot meshless method with radial basis functions for numerical solutions of Gilson–Pickering equation, Engineering with Computers 34 (2018) 37–44.
  • K. Ali, R. Yilmazer, H. Baskonus, H. Bulut, New wave behaviors and stability analysis of the Gilson–Pickering equation in plasma physics, Indian Journal of Physics 95 (2021) 1003–1008.
  • B. Fornberg, G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 289 (1361) (1978) 373–404.
  • J. Zhou, L. Tian, Solitons, peakons and periodic cusp wave solutions for the fornberg–whitham equation, Nonlinear Analysis: Real World Applications 11 (1) (2010) 356–363.
  • P. Rosenau, J. M. Hyman, Compactons: solitons with finite wavelength, Physical Review Letters 70 (5) (1993) 564.
  • F. Rus, F. R. Villatoro, Pad´e numerical method for the rosenau–hyman compacton equation, Mathematics and Computers in Simulation 76 (1-3) (2007) 188–192.
  • R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Physical review letters 71 (11) (1993) 1661.
  • A. Hone, The associated camassa-holm equation and the kdv equation, Journal of Physics A: Mathematical and General 32 (27) (1999) L307.
  • M. S. Hashemi, A variable coefficient third degree generalized abel equation method for solving stochastic schr¨odinger–hirota model, Chaos, Solitons & Fractals 180 (2024) 114606.
  • M. S. Hashemi, M. Bayram, M. B. Riaz, D. Baleanu, Bifurcation analysis, and exact solutions of the two-mode cahn–allen equation by a novel variable coefficient auxiliary equation method, Results in Physics 64 (2024) 107882.

Üçüncü Mertebe Gilson-Pickering Denkleminin Değişken Katsayılı Abel Denklemi Yoluyla Soliter Dalga Çözümü

Yıl 2025, Cilt: 14 Sayı: 3, 10 - 29, 26.09.2025
https://doi.org/10.46810/tdfd.1633095

Öz

Bu makalede, Değişken Katsayılı İkinci Derece Genelleştirilmiş Abel Denklemi Yöntemi olarak adlandırılan yeni bir analitik yöntem sunulmaktadır. Bu yöntem, çeşitli fiziksel uygulamalarda karşılaşılan önemli bir doğrusal olmayan kısmi diferansiyel denklem olan Gilson Pickering denkleminin karmaşıklıklarını ele almak için özel olarak geliştirilmiştir. Bu denklem, Fornberg-Whitham, Rosenau-Hyman ve Fuchssteiner-Fokas-Camassa-Holm denklemleri de dahil olmak üzere, diğer bazı önemli doğrusal olmayan kısmi diferansiyel denklemlerin genel bir durumu olarak kabul edilmektedir. Genellikle sabit katsayılı adi diferansiyel denklemlere (ADD) veya yardımcı denklemlere dayanan geleneksel yaklaşımların aksine, bu yöntem alt denklem yapısına entegre edilmiş değişken katsayılı ADD'lere dayanan benzersiz bir çerçeve sunmaktadır. Yöntem, Gilson Pickering denklemine uygulanarak yeni, tam analitik çözümler elde edilmiştir. Bu sonuçlar, tekniğin doğruluğunu kanıtlamakta ve üstün verimliliğini ve sağlamlığını ortaya koymaktadır. Yöntemin denklemin karmaşık dinamiklerini etkin şekilde yakalaması, akışkanlar dinamiği, optik ve dalga yayılımı gibi alanlardaki olguları modellemede uygunluğunu göstermiştir. Genel geçerliliği sayesinde, yöntem daha geniş bir doğrusal olmayan diferansiyel denklem sınıfına uygulanabilir. Bu çalışma, karmaşık fiziksel sistemleri çözmek için analitik araçların geliştirilmesinin önemine dikkat çekerek, ilgili alanlardaki çözüm stratejilerini genişletmektedir.

Kaynakça

  • X. Wang, J. Li, J. Li, A deep learning based numerical pde method for option pricing, Computational economics 62 (1) (2023) 149–164.
  • J. M. Taylor, D. Pardo, I. Muga, A deep fourier residual method for solving pdes using neural networks, Computer Methods in Applied Mechanics and Engineering 405 (2023) 115850.
  • M. S. Hashemi, E. Darvishi, D. Baleanu, A geometric approach for solving the densitydependent diffusion nagumo equation, Advances in Difference Equations 2016 (2016) 1–13.
  • S. Abbasbandy, M. S. Hashemi, Group preserving scheme for the cauchy problem of the laplace equation, Engineering analysis with boundary elements 35 (8) (2011) 1003–1009.
  • M. S. Hashemi, Numerical study of the onedimensional coupled nonlinear sine-gordon equations by a novel geometric meshless method, Engineering with Computers 37 (4) (2021) 3397–3407.
  • S. A. Durmus, N. Ozdemir, A. Secer, M. Ozisik, M. Bayram, Bright soliton of the third-order nonlinear schr¨odinger equation with power law of self-phase modulation in the absence of chromatic dispersion, Optical and Quantum Electronics 56 (5) (2024) 1–17.
  • W. B. Rabie, H. M. Ahmed, M. S. Hashemi, M. Mirzazadeh, M. Bayram, Generating optical solitons in the extended (3+ 1)-dimensional nonlinear kudryashov’s equation using the extended f-expansion method, Optical and Quantum Electronics 56 (5) (2024) 894.
  • K. Hosseini, E. Hincal, O. Obi, M. Mirzazadeh, Solitary waves of coupled nonlinear schr¨odinger equations: a generalized method, Optical and Quantum Electronics 55 (7) (2023) 599.
  • K. Hosseini, K. Sadri, M. Mirzazadeh, A. Ahmadian, Y.-M. Chu, S. Salahshour, Reliable methods to look for analytical and numerical solutions of a nonlinear differential equation arising in heat transfer with the conformable derivative, Mathematical Methods in the Applied Sciences 46 (10) (2023) 11342–11354.
  • M. Soliman, H. M. Ahmed, N. Badra, I. Samir, Effects of fractional derivative on fiber optical solitons of (2+ 1) perturbed nonlinear schr¨odinger equation using improved modified extended tanh-function method, Optical and Quantum Electronics 56 (5) (2024) 1–15.
  • I. Samir, H. M. Ahmed, Extracting stochastic solutions for complex ginzburg–landau model with chromatic dispersion and kerr law nonlinearity using improved modified extended tanh technique, Optical and Quantum Electronics 56 (5) (2024) 824.
  • C. Gilson, A. Pickering, Factorization and painlev´e analysis of a class of nonlinear thirdorder partial differential equations, Journal of Physics A: Mathematical and General 28 (10) (1995) 2871.
  • Y. Kai, Y. Li, L. Huang, Topological properties and wave structures of Gilson–Pickering equation, Chaos, Solitons & Fractals 157 (2022) 111899.
  • A. A. Elmandouh, M. E. Elbrolosy, New traveling wave solutions for Gilson–Pickering equation in plasma via bifurcation analysis and direct method, Mathematical Methods in the Applied Sciences (2022).
  • F. Zabihi, M. Saffarian, A not-a-knot meshless method with radial basis functions for numerical solutions of Gilson–Pickering equation, Engineering with Computers 34 (2018) 37–44.
  • K. Ali, R. Yilmazer, H. Baskonus, H. Bulut, New wave behaviors and stability analysis of the Gilson–Pickering equation in plasma physics, Indian Journal of Physics 95 (2021) 1003–1008.
  • B. Fornberg, G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 289 (1361) (1978) 373–404.
  • J. Zhou, L. Tian, Solitons, peakons and periodic cusp wave solutions for the fornberg–whitham equation, Nonlinear Analysis: Real World Applications 11 (1) (2010) 356–363.
  • P. Rosenau, J. M. Hyman, Compactons: solitons with finite wavelength, Physical Review Letters 70 (5) (1993) 564.
  • F. Rus, F. R. Villatoro, Pad´e numerical method for the rosenau–hyman compacton equation, Mathematics and Computers in Simulation 76 (1-3) (2007) 188–192.
  • R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Physical review letters 71 (11) (1993) 1661.
  • A. Hone, The associated camassa-holm equation and the kdv equation, Journal of Physics A: Mathematical and General 32 (27) (1999) L307.
  • M. S. Hashemi, A variable coefficient third degree generalized abel equation method for solving stochastic schr¨odinger–hirota model, Chaos, Solitons & Fractals 180 (2024) 114606.
  • M. S. Hashemi, M. Bayram, M. B. Riaz, D. Baleanu, Bifurcation analysis, and exact solutions of the two-mode cahn–allen equation by a novel variable coefficient auxiliary equation method, Results in Physics 64 (2024) 107882.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematiksel Fizikte Cebirsel Yapılar
Bölüm Makaleler
Yazarlar

Harun Biçer 0000-0002-9854-0595

Yayımlanma Tarihi 26 Eylül 2025
Gönderilme Tarihi 4 Şubat 2025
Kabul Tarihi 18 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Biçer, H. (2025). Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients. Türk Doğa ve Fen Dergisi, 14(3), 10-29. https://doi.org/10.46810/tdfd.1633095
AMA Biçer H. Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients. TDFD. Eylül 2025;14(3):10-29. doi:10.46810/tdfd.1633095
Chicago Biçer, Harun. “Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients”. Türk Doğa ve Fen Dergisi 14, sy. 3 (Eylül 2025): 10-29. https://doi.org/10.46810/tdfd.1633095.
EndNote Biçer H (01 Eylül 2025) Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients. Türk Doğa ve Fen Dergisi 14 3 10–29.
IEEE H. Biçer, “Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients”, TDFD, c. 14, sy. 3, ss. 10–29, 2025, doi: 10.46810/tdfd.1633095.
ISNAD Biçer, Harun. “Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients”. Türk Doğa ve Fen Dergisi 14/3 (Eylül2025), 10-29. https://doi.org/10.46810/tdfd.1633095.
JAMA Biçer H. Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients. TDFD. 2025;14:10–29.
MLA Biçer, Harun. “Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients”. Türk Doğa ve Fen Dergisi, c. 14, sy. 3, 2025, ss. 10-29, doi:10.46810/tdfd.1633095.
Vancouver Biçer H. Solitary Wave Solution of the Third Order Gilson-Pickering Equation Via the Abel’s Equation with Variable Coefficients. TDFD. 2025;14(3):10-29.