Araştırma Makalesi
BibTex RIS Kaynak Göster

Berberis thunbergii bitkisinin hidroetanolik ekstraktının fitokimyasal içerikleri ve in vitro aktiviteleri

Yıl 2025, Cilt: 14 Sayı: 3, 183 - 191, 26.09.2025
https://doi.org/10.46810/tdfd.1664372

Öz

Japon kan otu olarak bilinen Berberis thunbergii çeşitli fitokimyasal bileşenleri nedeniyle birçok tıbbi özelliğe sahiptir. Bu nedenle, B. thunbergii’nin hidroetanolik ekstraktının fitokimyasal içeriği, antioksidan, anti-inflamatuar ve enzim inhibisyon aktiviteleri incelenmiştir. LC-MS/MS ve GC-MS/MS analizinde ekstraktın ana bileşenleri sırasıyla klorojenik ve oleik asit olarak belirlendi. Toplam fenol ve flavonoid miktarları sırasıyla 259.40±0.96 mg GAE/g ekstrakt ve 2.60±0.57 mg QE/g ekstrakt olarak bulunmuştur. FRAP testinde 6.38 mg TE/g ekstrakt düzeyinde demiri indirgediği ve DPPH˙ radikal süpürme testinde %85.26 oranında radikal süpürme etkisine sahip olduğu kaydedilmiştir. Ekstraktın antiinflamatuar özelliği 60.80±2.22 µg/mL düzeyinde iken DFS nin 45.23±0.68 bulundu. Enzim inhibisyonu açısından değerlendirildiğinde, üreazı düşük düzeyde (44,19±0,22 µg/mL) ve ksantin oksidazı yüksek düzeyde (0,91±0,21 µg/mL) inhibe ettiği gözlemlenmiştir. Ayrıca, DNA’yı %57,55 oranında (Form I değeri) koruduğu kaydedilmiştir.
Yüksek antioksidan ve ksantin oksidaz inhibisyon etkileri nedeniyle B. thunbergii’nin gıda, kozmetik ve tıp alanlarında potansiyel uygulamalara sahip olduğu düşünülmektedir.

Proje Numarası

BAP04-A-2025-5586

Kaynakça

  • Madhavi, D. and D. Salunkhe, Toxicological aspects of food antioxidants, in Food antioxidants. 1995, CRC Press. p. 281-374. https://doi.org/10.1201/9781482273175-12.
  • Hall, C. and S. Cuppett, Structure-activities of natural antioxidants. Antioxidant methodology in vivo and in vitro concepts, 1997: p. 2-29.
  • Zainol, M., et al., Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chemistry, 2003. 81(4): p. 575-581. https://doi.org/10.1016/s0308-8146(02)00498-3.
  • Rounsaville, T.J. and T.G. Ranney, Ploidy levels and genome sizes of Berberis L. and Mahonia Nutt. species, hybrids, and cultivars. HortScience, 2010. 45(7): p. 1029-1033.
  • Mokhber-Dezfuli, N., et al., Phytochemistry and pharmacology of berberis species. Pharmacognosy reviews, 2014. 8(15): p. 8.
  • Villinski, J., et al., Antibacterial activity and alkaloid content of Berberis thunbergii, Berberis vulgaris and Hydrastis canadensis. Pharmaceutical Biology, 2003. 41(8): p. 551-557.
  • Fernández-Poyatos, M.d.P., et al., Phenolic characterization, antioxidant activity, and enzyme inhibitory properties of Berberis thunbergii DC. leaves: A valuable source of phenolic acids. Molecules, 2019. 24(22): p. 4171.
  • Zhang, C.-R., R.E. Schutzki and M.G. Nair, Antioxidant and anti-inflammatory compounds in the popular landscape plant Berberis thunbergii var. atropurpurea. Natural Product Communications, 2013. 8(2): p. 1934578X1300800207.
  • Guo, J., et al., Novel green synthesis and characterization of a chemotherapeutic supplement by silver nanoparticles containing Berberis thunbergii leaf for the treatment of human pancreatic cancer. Biotechnology and Applied Biochemistry, 2022. 69(3): p. 887-897.
  • Yildiz, İ., et al., A phytochemical content analysis, and antioxidant activity evaluation using a novel method on Melilotus officinalis flower. South African Journal of Botany, 2024. 174: p. 686-693.
  • Erenler, R., et al., Phytochemical analyses of Ebenus haussknechtii flowers: Quantification of phenolics, antioxidants effect, and molecular docking studies. Bütünleyici ve Anadolu Tıbbı Dergisi, 2024. 5(2): p. 1-9. https://doi.org/10.53445/batd.1479874.
  • Başar, Y., et al., Phytochemical profiling, molecular docking and ADMET prediction of crude extract of Atriplex nitens Schkuhr for the screening of antioxidant and urease inhibitory. International Journal of Chemistry and Technology, 2024. 10.32571/ijct.1389719.
  • Başar, Y. and R. Erenler, Phytochemical analysis of Silybum marianum flowers: Quantitative analysis of natural compounds and molecular docking application. Turkish Journal of Biodiversity, 2024. 7(1): p. 20-31. https://doi.org/10.38059/biodiversity.1450643.
  • Golmakani, E., et al., Phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction and perculation method from roots of Scutellaria pinnatifida A. Hamilt. subsp alpina (Bornm) Rech. f. The Journal of Supercritical Fluids, 2014. 95: p. 318-324. https://doi.org/10.1016/j.supflu.2014.09.020.
  • Isildak, Ö., I. Yildiz and N. Genc, A new potentiometric PVC membrane sensor for the determination of DPPH radical scavenging activity of plant extracts. Food Chem, 2022. 373(Pt A): p. 131420. 10.1016/j.foodchem.2021.131420.
  • Isildak, Ö., et al., New potentiometric PVC membrane electrode for Ferric Reduction Antioxidant Power assay. Food Chemistry, 2023. 423: p. 136261. https://doi.org/10.1016/j.foodchem.2023.136261.
  • Kandikattu, K., et al., Evaluation of anti-inflammatory activity of Canthium parviflorum by in-vitro method. Indian Journal of Research in Pharmacy and Biotechnology, 2013. 1(5): p. 729-731.
  • Li, Z., et al., İn silico identification and experimental validation of two types of angiotensin-converting enzyme (ACE) and xanthine oxidase (XO) milk inhibitory peptides. Food Chemistry, 2025. 464: p. 141864. https://doi.org/10.1016/j.foodchem.2024.141864.
  • Zhang, L., et al., Inhibition of urease by bismuth (III): implications for the mechanism of action of bismuth drugs. Biometals, 2006. 19(5): p. 503-511. https://doi.org/10.1007/s10534-005-5449-0.
  • Yenigun, S., et al., DNA protection, molecular docking, antioxidant, antibacterial, enzyme inhibition, and enzyme kinetic studies for parietin, isolated from Xanthoria parietina (L.) Th. Fr. Journal of Biomolecular Structure and Dynamics, 2024. 42(2): p. 848-862. https://doi.org/10.1080/07391102.2023.2196693
  • İpek, Y., et al., İn vitro bioactivities and in silico enzyme interactions of abietatrien-3β-ol by bio-guided isolation from Nepeta italica subsp. italica. Journal of Biomolecular Structure and Dynamics, 2024. 42(1): p. 1-24. https://doi.org/10.1080/07391102.2024.2322626.
  • Hasan, M.M., et al., Unveiling the therapeutic potential: Evaluation of anti-inflammatory and antineoplastic activity of Magnolia champaca Linn’s stem bark isolate through molecular docking insights. Heliyon, 2024. 10(1).
  • Kalaskar, M., et al., Isolation and Characterization of Anti-Inflammatory Compounds from Ficus microcarpa Lf Stem Bark. Plants, 2023. 12(18): p. 3248.
  • Akbar, A., et al., Investigation of Anti‐Inflammatory Properties, Phytochemical Constituents, Antioxidant, and Antimicrobial Potentials of the Whole Plant Ethanolic Extract of Achillea santolinoides subsp. wilhelmsii (K. Koch) Greuter of Balochistan. Oxidative Medicine and Cellular Longevity, 2023. 2023(1): p. 2567333.
  • Begum, F., et al., Synthesis and urease inhibitory potential of benzophenone sulfonamide hybrid in vitro and in silico. Bioorganic & Medicinal Chemistry, 2019. 27(6): p. 1009-1022.
  • Yakan, H., et al., Synthesis, structure elucidation, biological activity, enzyme inhibition and molecular docking studies of new Schiff bases based on 5-nitroisatin-thiocarbohydrazone. Journal of Molecular Structure, 2023. 1277: p. 134799.
  • Yakan, H., et al., Kinetic Studies, Antioxidant Activities, Enzyme Inhibition Properties and Molecular Docking of 1, 3-Dihydro-1, 3-Dioxoisoindole Derivatives. Acta Chimica Slovenica, 2023. 70(1): p. 29-43. https://doi.org/10.17344/acsi.2022.7808.
  • Çakmak, Ş., Novel diamide derivatives: Synthesis, characterization, urease inhibition, antioxidant, antibacterial, and molecular docking studies. Journal of Molecular Structure, 2022. 1261: p. 132932.
  • Kosikowska, P. and Ł. Berlicki, Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert opinion on therapeutic patents, 2011. 21(6): p. 945-957.
  • Jiang, X.-Y., et al., Mechanism, kinetics, and antimicrobial activities of 2-hydroxy-1-naphthaldehyde semicarbazone as a new Jack bean urease inhibitor. New Journal of Chemistry, 2016. 40(4): p. 3520-3527.
  • Cao, H., J. Hall and R. Hille, X-ray crystal structure of arsenite-inhibited xanthine oxidase: μ-sulfido, μ-oxo double bridge between molybdenum and arsenic in the active site. Journal of the American Chemical Society, 2011. 133(32): p. 12414-12417.
  • Shi, C., et al., Recent advances in gout drugs. European Journal of Medicinal Chemistry, 2023. 245: p. 114890.
  • Theken, K.N., Variability in analgesic response to non-steroidal anti-inflammatory drugs. Prostaglandins & other lipid mediators, 2018. 139: p. 63-70.
  • Lomen, P.L., et al., Flurbiprofen in the treatment of acute gout: a comparison with indomethacin. The American journal of medicine, 1986. 80(3): p. 134-139.
  • Herman, M.K., Differential spectrophotometry of purine compounds by means of specific enzymes. Journal of Biological Chemistry, 1947. 167: p. 429-443.
  • Grum, C.M., et al., Plasma xanthine oxidase activity in patients with adult respiratory distress syndrome. Journal of critical care, 1987. 2(1): p. 22-26.
  • Huang, J. and K. Pu, Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chemical Science, 2021. 12(10): p. 3379-3392.
  • Pillinger, M.H. and B.F. Mandell. Therapeutic approaches in the treatment of gout. in Seminars in Arthritis and Rheumatism. 2020. Elsevier.
  • Yu, X., et al., Mitochondria-targetable small molecule fluorescent probes for the detection of cancer-associated biomarkers: A review. Analytica chimica acta, 2024. 1289: p. 342060.
  • Yang, Y., et al., Development of xanthine oxidase activated NIR fluorescence probe in vivo imaging. Sensors and Actuators B: Chemical, 2025. 422: p. 136563.
  • Ercan, L., Bioactive components, antioxidant capacity, and antimicrobial activity of Berberis crataegina fruit. Pharmacological Research - Natural Products, 2024. 2: p. 100020. https://doi.org/10.1016/j.prenap.2024.100020.
  • Shan, S., et al., Evaluation of polyphenolics content and antioxidant activity in edible wild fruits. BioMed research international, 2019. 2019(1): p. 1381989.
  • Bustamante, L., et al., Pharmacokinetics of low molecular weight phenolic compounds in gerbil plasma after the consumption of calafate berry (Berberis microphylla) extract. Food chemistry, 2018. 268: p. 347-354.
  • Lemoui, R., et al., Isolation of phytoconstituents and evaluation of biological potentials of Berberis hispanica from Algeria. Bangladesh Journal of Pharmacology, 2018. 13(2): p. 179-186.
  • Karimkhani, M., et al., Effect of extraction solvents on lipid peroxidation, antioxidant, antibacterial and antifungal activities of Berberis orthobotrys Bienerat ex CK Schneider. Journal of Food Measurement and Characterization, 2019. 13: p. 357-367.
  • Vignesh, A., et al., Nutritional assessment, antioxidant, anti-inflammatory and antidiabetic potential of traditionally used wild plant, Berberis tinctoria Lesch. Trends in Phytochemical Research, 2021. 5(2): p. 71-92.

Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract

Yıl 2025, Cilt: 14 Sayı: 3, 183 - 191, 26.09.2025
https://doi.org/10.46810/tdfd.1664372

Öz

Berberis thunbergii, also known as Japanese dogwood, has many medicinal properties due to its rich phytochemical components. Therefore, B. thunbergii hydroethanolic extract was investigated phytochemical content, antioxidant, anti-inflammatory, and enzyme inhibition activities. In LC-MS/MS and GC-MS/MS analysis, the main components of the extract were determined as chlorogenic and oleic acid, respectively. Total phenol and flavonoid amounts were found as 259.40±0.96 mg GAE/g extract and 2.60±0.57 mg QE/g extract, respectively. It was recorded that it could reduce iron as 6.38 mg TE/g extract in the FRAP test and had a radical scavenging effect of 85.26% in the DPPH֗ scavenging test. The anti-inflammatory property of the extract was found to be 60.80±2.22 µg/mL, while DFS was found to be 45.23±0.68. Additionally, in enzyme inhibition, it was observed that it inhibited urease at a low level of 44.19±0.22 µg/mL and xanthine oxidase at a high level of 0.91±0.21 µg/mL. It was recorded that it protected DNA with a 57.55% Form I value. Due to its high antioxidant and XO inhibition effects, B. thunbergii is thought to have potential applications in food, cosmetics, and medicine.

Destekleyen Kurum

Ondokuz Mayis University

Proje Numarası

BAP04-A-2025-5586

Kaynakça

  • Madhavi, D. and D. Salunkhe, Toxicological aspects of food antioxidants, in Food antioxidants. 1995, CRC Press. p. 281-374. https://doi.org/10.1201/9781482273175-12.
  • Hall, C. and S. Cuppett, Structure-activities of natural antioxidants. Antioxidant methodology in vivo and in vitro concepts, 1997: p. 2-29.
  • Zainol, M., et al., Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chemistry, 2003. 81(4): p. 575-581. https://doi.org/10.1016/s0308-8146(02)00498-3.
  • Rounsaville, T.J. and T.G. Ranney, Ploidy levels and genome sizes of Berberis L. and Mahonia Nutt. species, hybrids, and cultivars. HortScience, 2010. 45(7): p. 1029-1033.
  • Mokhber-Dezfuli, N., et al., Phytochemistry and pharmacology of berberis species. Pharmacognosy reviews, 2014. 8(15): p. 8.
  • Villinski, J., et al., Antibacterial activity and alkaloid content of Berberis thunbergii, Berberis vulgaris and Hydrastis canadensis. Pharmaceutical Biology, 2003. 41(8): p. 551-557.
  • Fernández-Poyatos, M.d.P., et al., Phenolic characterization, antioxidant activity, and enzyme inhibitory properties of Berberis thunbergii DC. leaves: A valuable source of phenolic acids. Molecules, 2019. 24(22): p. 4171.
  • Zhang, C.-R., R.E. Schutzki and M.G. Nair, Antioxidant and anti-inflammatory compounds in the popular landscape plant Berberis thunbergii var. atropurpurea. Natural Product Communications, 2013. 8(2): p. 1934578X1300800207.
  • Guo, J., et al., Novel green synthesis and characterization of a chemotherapeutic supplement by silver nanoparticles containing Berberis thunbergii leaf for the treatment of human pancreatic cancer. Biotechnology and Applied Biochemistry, 2022. 69(3): p. 887-897.
  • Yildiz, İ., et al., A phytochemical content analysis, and antioxidant activity evaluation using a novel method on Melilotus officinalis flower. South African Journal of Botany, 2024. 174: p. 686-693.
  • Erenler, R., et al., Phytochemical analyses of Ebenus haussknechtii flowers: Quantification of phenolics, antioxidants effect, and molecular docking studies. Bütünleyici ve Anadolu Tıbbı Dergisi, 2024. 5(2): p. 1-9. https://doi.org/10.53445/batd.1479874.
  • Başar, Y., et al., Phytochemical profiling, molecular docking and ADMET prediction of crude extract of Atriplex nitens Schkuhr for the screening of antioxidant and urease inhibitory. International Journal of Chemistry and Technology, 2024. 10.32571/ijct.1389719.
  • Başar, Y. and R. Erenler, Phytochemical analysis of Silybum marianum flowers: Quantitative analysis of natural compounds and molecular docking application. Turkish Journal of Biodiversity, 2024. 7(1): p. 20-31. https://doi.org/10.38059/biodiversity.1450643.
  • Golmakani, E., et al., Phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction and perculation method from roots of Scutellaria pinnatifida A. Hamilt. subsp alpina (Bornm) Rech. f. The Journal of Supercritical Fluids, 2014. 95: p. 318-324. https://doi.org/10.1016/j.supflu.2014.09.020.
  • Isildak, Ö., I. Yildiz and N. Genc, A new potentiometric PVC membrane sensor for the determination of DPPH radical scavenging activity of plant extracts. Food Chem, 2022. 373(Pt A): p. 131420. 10.1016/j.foodchem.2021.131420.
  • Isildak, Ö., et al., New potentiometric PVC membrane electrode for Ferric Reduction Antioxidant Power assay. Food Chemistry, 2023. 423: p. 136261. https://doi.org/10.1016/j.foodchem.2023.136261.
  • Kandikattu, K., et al., Evaluation of anti-inflammatory activity of Canthium parviflorum by in-vitro method. Indian Journal of Research in Pharmacy and Biotechnology, 2013. 1(5): p. 729-731.
  • Li, Z., et al., İn silico identification and experimental validation of two types of angiotensin-converting enzyme (ACE) and xanthine oxidase (XO) milk inhibitory peptides. Food Chemistry, 2025. 464: p. 141864. https://doi.org/10.1016/j.foodchem.2024.141864.
  • Zhang, L., et al., Inhibition of urease by bismuth (III): implications for the mechanism of action of bismuth drugs. Biometals, 2006. 19(5): p. 503-511. https://doi.org/10.1007/s10534-005-5449-0.
  • Yenigun, S., et al., DNA protection, molecular docking, antioxidant, antibacterial, enzyme inhibition, and enzyme kinetic studies for parietin, isolated from Xanthoria parietina (L.) Th. Fr. Journal of Biomolecular Structure and Dynamics, 2024. 42(2): p. 848-862. https://doi.org/10.1080/07391102.2023.2196693
  • İpek, Y., et al., İn vitro bioactivities and in silico enzyme interactions of abietatrien-3β-ol by bio-guided isolation from Nepeta italica subsp. italica. Journal of Biomolecular Structure and Dynamics, 2024. 42(1): p. 1-24. https://doi.org/10.1080/07391102.2024.2322626.
  • Hasan, M.M., et al., Unveiling the therapeutic potential: Evaluation of anti-inflammatory and antineoplastic activity of Magnolia champaca Linn’s stem bark isolate through molecular docking insights. Heliyon, 2024. 10(1).
  • Kalaskar, M., et al., Isolation and Characterization of Anti-Inflammatory Compounds from Ficus microcarpa Lf Stem Bark. Plants, 2023. 12(18): p. 3248.
  • Akbar, A., et al., Investigation of Anti‐Inflammatory Properties, Phytochemical Constituents, Antioxidant, and Antimicrobial Potentials of the Whole Plant Ethanolic Extract of Achillea santolinoides subsp. wilhelmsii (K. Koch) Greuter of Balochistan. Oxidative Medicine and Cellular Longevity, 2023. 2023(1): p. 2567333.
  • Begum, F., et al., Synthesis and urease inhibitory potential of benzophenone sulfonamide hybrid in vitro and in silico. Bioorganic & Medicinal Chemistry, 2019. 27(6): p. 1009-1022.
  • Yakan, H., et al., Synthesis, structure elucidation, biological activity, enzyme inhibition and molecular docking studies of new Schiff bases based on 5-nitroisatin-thiocarbohydrazone. Journal of Molecular Structure, 2023. 1277: p. 134799.
  • Yakan, H., et al., Kinetic Studies, Antioxidant Activities, Enzyme Inhibition Properties and Molecular Docking of 1, 3-Dihydro-1, 3-Dioxoisoindole Derivatives. Acta Chimica Slovenica, 2023. 70(1): p. 29-43. https://doi.org/10.17344/acsi.2022.7808.
  • Çakmak, Ş., Novel diamide derivatives: Synthesis, characterization, urease inhibition, antioxidant, antibacterial, and molecular docking studies. Journal of Molecular Structure, 2022. 1261: p. 132932.
  • Kosikowska, P. and Ł. Berlicki, Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert opinion on therapeutic patents, 2011. 21(6): p. 945-957.
  • Jiang, X.-Y., et al., Mechanism, kinetics, and antimicrobial activities of 2-hydroxy-1-naphthaldehyde semicarbazone as a new Jack bean urease inhibitor. New Journal of Chemistry, 2016. 40(4): p. 3520-3527.
  • Cao, H., J. Hall and R. Hille, X-ray crystal structure of arsenite-inhibited xanthine oxidase: μ-sulfido, μ-oxo double bridge between molybdenum and arsenic in the active site. Journal of the American Chemical Society, 2011. 133(32): p. 12414-12417.
  • Shi, C., et al., Recent advances in gout drugs. European Journal of Medicinal Chemistry, 2023. 245: p. 114890.
  • Theken, K.N., Variability in analgesic response to non-steroidal anti-inflammatory drugs. Prostaglandins & other lipid mediators, 2018. 139: p. 63-70.
  • Lomen, P.L., et al., Flurbiprofen in the treatment of acute gout: a comparison with indomethacin. The American journal of medicine, 1986. 80(3): p. 134-139.
  • Herman, M.K., Differential spectrophotometry of purine compounds by means of specific enzymes. Journal of Biological Chemistry, 1947. 167: p. 429-443.
  • Grum, C.M., et al., Plasma xanthine oxidase activity in patients with adult respiratory distress syndrome. Journal of critical care, 1987. 2(1): p. 22-26.
  • Huang, J. and K. Pu, Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chemical Science, 2021. 12(10): p. 3379-3392.
  • Pillinger, M.H. and B.F. Mandell. Therapeutic approaches in the treatment of gout. in Seminars in Arthritis and Rheumatism. 2020. Elsevier.
  • Yu, X., et al., Mitochondria-targetable small molecule fluorescent probes for the detection of cancer-associated biomarkers: A review. Analytica chimica acta, 2024. 1289: p. 342060.
  • Yang, Y., et al., Development of xanthine oxidase activated NIR fluorescence probe in vivo imaging. Sensors and Actuators B: Chemical, 2025. 422: p. 136563.
  • Ercan, L., Bioactive components, antioxidant capacity, and antimicrobial activity of Berberis crataegina fruit. Pharmacological Research - Natural Products, 2024. 2: p. 100020. https://doi.org/10.1016/j.prenap.2024.100020.
  • Shan, S., et al., Evaluation of polyphenolics content and antioxidant activity in edible wild fruits. BioMed research international, 2019. 2019(1): p. 1381989.
  • Bustamante, L., et al., Pharmacokinetics of low molecular weight phenolic compounds in gerbil plasma after the consumption of calafate berry (Berberis microphylla) extract. Food chemistry, 2018. 268: p. 347-354.
  • Lemoui, R., et al., Isolation of phytoconstituents and evaluation of biological potentials of Berberis hispanica from Algeria. Bangladesh Journal of Pharmacology, 2018. 13(2): p. 179-186.
  • Karimkhani, M., et al., Effect of extraction solvents on lipid peroxidation, antioxidant, antibacterial and antifungal activities of Berberis orthobotrys Bienerat ex CK Schneider. Journal of Food Measurement and Characterization, 2019. 13: p. 357-367.
  • Vignesh, A., et al., Nutritional assessment, antioxidant, anti-inflammatory and antidiabetic potential of traditionally used wild plant, Berberis tinctoria Lesch. Trends in Phytochemical Research, 2021. 5(2): p. 71-92.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoanaliz, Analitik Biyokimya
Bölüm Makaleler
Yazarlar

Elif Ceren Karakuş 0009-0004-5082-7919

Tevfik Ozen 0000-0003-0133-5630

Semiha Yenigün 0000-0002-1979-5427

Yunus Başar 0000-0002-7785-3242

İbrahim Demirtas 0000-0001-8946-647X

İlyas Yıldız 0000-0003-1254-1069

Proje Numarası BAP04-A-2025-5586
Yayımlanma Tarihi 26 Eylül 2025
Gönderilme Tarihi 16 Nisan 2025
Kabul Tarihi 5 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Karakuş, E. C., Ozen, T., Yenigün, S., … Başar, Y. (2025). Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract. Türk Doğa ve Fen Dergisi, 14(3), 183-191. https://doi.org/10.46810/tdfd.1664372
AMA Karakuş EC, Ozen T, Yenigün S, Başar Y, Demirtas İ, Yıldız İ. Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract. TDFD. Eylül 2025;14(3):183-191. doi:10.46810/tdfd.1664372
Chicago Karakuş, Elif Ceren, Tevfik Ozen, Semiha Yenigün, Yunus Başar, İbrahim Demirtas, ve İlyas Yıldız. “Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract”. Türk Doğa ve Fen Dergisi 14, sy. 3 (Eylül 2025): 183-91. https://doi.org/10.46810/tdfd.1664372.
EndNote Karakuş EC, Ozen T, Yenigün S, Başar Y, Demirtas İ, Yıldız İ (01 Eylül 2025) Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract. Türk Doğa ve Fen Dergisi 14 3 183–191.
IEEE E. C. Karakuş, T. Ozen, S. Yenigün, Y. Başar, İ. Demirtas, ve İ. Yıldız, “Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract”, TDFD, c. 14, sy. 3, ss. 183–191, 2025, doi: 10.46810/tdfd.1664372.
ISNAD Karakuş, Elif Ceren vd. “Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract”. Türk Doğa ve Fen Dergisi 14/3 (Eylül2025), 183-191. https://doi.org/10.46810/tdfd.1664372.
JAMA Karakuş EC, Ozen T, Yenigün S, Başar Y, Demirtas İ, Yıldız İ. Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract. TDFD. 2025;14:183–191.
MLA Karakuş, Elif Ceren vd. “Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract”. Türk Doğa ve Fen Dergisi, c. 14, sy. 3, 2025, ss. 183-91, doi:10.46810/tdfd.1664372.
Vancouver Karakuş EC, Ozen T, Yenigün S, Başar Y, Demirtas İ, Yıldız İ. Phytochemical contents and in vitro activities of Berberis thunbergii hydroethanolic extract. TDFD. 2025;14(3):183-91.