Araştırma Makalesi
BibTex RIS Kaynak Göster

Online Fresh Fruit and Vegetable Purchase Intention: The Moderating Role of Need for Tactile Input in a Technology Acceptance Model Integrated with Trust and Perceived Risk

Yıl 2025, Cilt: 11 Sayı: 2, 124 - 143, 30.12.2025
https://doi.org/10.61513/tead.1770856

Öz

The main objective of this study is to examine the factors that influence consumers' intentions to purchase online fresh fruit and vegetable. In this regard, a research model has been developed by combining the Technology Acceptance Model with the factors of trust, perceived risk, and need for tactile input. Data was collected from 493 individuals through a survey in order to test the hypotheses included in this extended theoretical model. Structural equation modeling was applied for data analysis. The results reveal the applicability of the extended Technology Acceptance Model in assessing the intention to purchase fresh agricultural products online. More specifically, the results show that perceived ease of use significantly positively affects perceived usefulness. The results also show that perceived usefulness, perceived ease of use, trust, and perceived risk have significant effects on attitude. Among these factors, trust has the greatest impact. Furthermore, the results show that perceived usefulness, attitude and perceived risk significantly influence the intention to purchase fresh fruit and vegetable online. Among these, while perceived risk reduces online purchase intention, attitude has the greatest impact. In the results, the need for tactile input plays an important moderating role in the relationship between perceived risk and purchase intention. According to this, when consumers have a high need for tactile input, the perceived risk for fresh fruit and vegetable products has a greater negative effect on the intention to purchase fresh fruit and vegetable online. When these results are taken together, while fruit and vegetable e-retailers need to focus on developing programs that emphasize their efficiency and effectiveness, alongside communication efforts that highlight the time savings, variety, and convenience offered by online shopping, at the same time, they need to make efforts to increase consumer trust and reduce risk perception.

Kaynakça

  • Ahmed, N., Li, C., Khan, A., Qalati, S. A., Naz, S., ve Rana, F. (2021). Purchase intention toward organic food among young consumers using theory of planned behavior: Role of environmental concerns and environmental awareness. Journal of Environmental Planning and Management, 64(5), 796-822. https://doi.org/10.1080/09640568.2020.1785404
  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
  • Akar, E. (2024). Digital consumerism in times of crisis: Exploring the shift in online shopping behaviour. British Food Journal, 126(9), 3441-3462. https://doi.org/10.1108/BFJ-01-2024-0021
  • Amirtha, R., ve Sivakumar, V. J. (2018). Does family life cycle stage influence e-shopping acceptance by Indian women? An examination using the technology acceptance model. Behaviour & Information Technology, 37(3), 267-294. https://doi.org/10.1080/0144929X.2018.1434560
  • Anderson, J. C., ve Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. https://doi.org/10.1037/0033-2909.103.3.411
  • Bagozzi, R. P., ve Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
  • Balaji, M. S., Raghavan, S., ve Jha, S. (2011). Role of tactile and visual inputs in product evaluation: A multisensory perspective. Asia Pacific Journal of Marketing and Logistics, 23(4), 513-530. https://doi.org/10.1108/13555851111165066
  • Bauerová, R., ve Klepek, M. (2018). Technology acceptance as a determinant of online grocery shopping adoption. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(3), 737-746. https://doi.org/10.11118/actaun201866030737
  • Benavides-Espinosa, M. del M., Ribeiro-Soriano, D., ve Gieure, C. (2024). How can agrifood businesses improve their performance? The role of digital transformation. British Food Journal, 126(4), 1682-1697. https://doi.org/10.1108/BFJ-06-2022-0541
  • Bhatnagar, A., Misra, S., ve Rao, H. R. (2000). On risk, convenience, and Internet shopping behavior. Communications of the ACM, 43(11), 98-105. https://doi.org/10.1145/353360.353371
  • Bilgihan, A. (2016). Gen Y customer loyalty in online shopping: An integrated model of trust, user experience and branding. Computers in Human Behavior, 61, 103-113. https://doi.org/10.1016/j.chb.2016.03.014
  • Buldeo Rai, H. (2021). The net environmental impact of online shopping, beyond the substitution bias. Journal of Transport Geography, 93, 103058. https://doi.org/10.1016/j.jtrangeo.2021.103058
  • Cang, Y., ve Wang, D. (2021). A comparative study on the online shopping willingness of fresh agricultural products between experienced consumers and potential consumers. Sustainable Computing: Informatics and Systems, 30, 100493. https://doi.org/10.1016/j.suscom.2020.100493
  • Chen, L., Rashidin, M. S., Song, F., Wang, Y., Javed, S., ve Wang, J. (2021). Determinants of consumer's purchase intention on fresh e-commerce platform: Perspective of UTAUT model. SAGE Open, 11(2), 21582440211027875. https://doi.org/10.1177/21582440211027875
  • Citrin, A. V., Stem, D. E., Spangenberg, E. R., ve Clark, M. J. (2003). Consumer need for tactile input: An internet retailing challenge. Journal of Business Research, 56(11), 915-922. https://doi.org/10.1016/S0148-2963(01)00278-8
  • Collier, J. E. (2020). Applied Structural Equation Modeling Using AMOS: Basic to Advanced Techniques. (First edition). Routledge.
  • Cui, L., He, S., Deng, H., ve Wang, X. (2022). Sustaining customer loyalty of fresh food e-tailers: An empirical study in China. Asia Pacific Journal of Marketing and Logistics, 35(3), 669-686. https://doi.org/10.1108/APJML-01-2022-0013
  • Çelik, H., ve Yilmaz, V. (2011). Extending the technology acceptance model for adoption of e-shopping by consumers in Turkey. Journal of Electronic Commerce Research, 12, 152-164.
  • Davis, F. D. (1989). Perceived usefulness, perceived Ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. JSTOR. https://doi.org/10.2307/249008
  • Davis, F. D., Bagozzi, R. P., ve Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
  • ECDB. (2025). Fruits & Vegetables eCommerce Market in Turkey—Data & Trends. https://ecommercedb.com/markets/tr/fruits-vegetables
  • Featherman, M. S., ve Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. https://doi.org/10.1016/S1071-5819(03)00111-3
  • Fornell, C., ve Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Gatter, S., Hüttl-Maack, V., ve Rauschnabel, P. A. (2022). Can augmented reality satisfy consumers’ need for touch? Psychology & Marketing, 39(3), 508-523. https://doi.org/10.1002/mar.21618
  • George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and feference (16th ed.). Routledge.
  • Gürün, S., ve Tümer, E. İ. (2023). Tüketicilerin yöresel ürünleri internet üzerinden satın alma ve pazarlama istekliliğini etkileyen faktörler. Türkiye Tarımsal Araştırmalar Dergisi, 10(1), 101-108. https://doi.org/10.19159/tutad.1247343
  • Hair, J. F., Black, W. C., Babin, B. J., ve Anderson, R. E. (2014). Multivariate Data Analysis (Seventh edition). Pearson Pub.
  • Hansen, T. (2008). Consumer values, the theory of planned behaviour and online grocery shopping. International Journal of Consumer Studies, 32(2), 128-137. https://doi.org/10.1111/j.1470-6431.2007.00655.x
  • Hansen, T., Møller Jensen, J., ve Stubbe Solgaard, H. (2004). Predicting online grocery buying intention: A comparison of the theory of reasoned action and the theory of planned behavior. International Journal of Information Management, 24(6), 539-550. https://doi.org/10.1016/j.ijinfomgt.2004.08.004
  • Haşıloğlu, S. B., Baran, T. ve Aydın, O. (2015). Pazarlama araştırmalarındaki potansiyel problemlere yönelik bir araştırma: Kolayda örnekleme ve sıklık ifadeli ölçek maddeleri. Pamukkale İşletme ve Bilişim Yönetimi Dergisi, 2(1), 19-28. https://dergipark.org.tr/tr/pub/pibyd/issue/35465/394010
  • Huang, Y., ve Oppewal, H. (2006). Why consumers hesitate to shop online: An experimental choice analysis of grocery shopping and the role of delivery fees. International Journal of Retail & Distribution Management, 34(4-5), 334-353. https://doi.org/10.1108/09590550610660260
  • İşcioğlu, T. E. (2018). Sanal market alışverişi niyetinin sürekliliğini etkileyen unsurlar ve bir model önerisi. Pazarlama ve Pazarlama Araştırmaları Dergisi, 11(21), 99-124. https://dergipark.org.tr/en/pub/ppad/issue/60998/906009
  • Jarvenpaa, S. L., Tractinsky, N., ve Vitale, M. (2000). Consumer trust in an Internet store. Information Technology and Management, 1(1), 45-71. https://doi.org/10.1023/A:1019104520776
  • Jin, S., Li, H., ve Li, Y. (2017). Preferences of Chinese consumers for the attributes of fresh produce portfolios in an e-commerce environment. British Food Journal, 119(4), 817-829. https://doi.org/10.1108/BFJ-09-2016-0424
  • Kim, D. J., Ferrin, D. L., ve Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564. https://doi.org/10.1016/j.dss.2007.07.001
  • Kim, Y. G., ve Woo, E. (2016). Consumer acceptance of a quick response (QR) code for the food traceability system: Application of an extended technology acceptance model (TAM). Food Research International, 85, 266-272. https://doi.org/10.1016/j.foodres.2016.05.002
  • Kline, R. B. (2015). Principles and practice of structural equation modeling (4. bs). Guilford Publications.
  • Klopping, I., ve McKinney, E. (2004). Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Information Technology, Learning, and Performance Journal, 22(1), 35-48. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=139ba3d65ee258eb40d776617d181c5dd2fb1d90
  • Kock, F., Berbekova, A., ve Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 104330. https://doi.org/10.1016/j.tourman.2021.104330
  • Kotchen, M. J., ve Reiling, S. D. (2000). Environmental attitudes, motivations, and contingent valuation of nonuse values: A case study involving endangered species. Ecological Economics, 32(1), 93-107. https://doi.org/10.1016/S0921-8009(99)00069-5
  • Kraus, S. J. (1995). Attitudes and the prediction of behavior: A meta-analysis of the empirical literature. Personality and Social Psychology Bulletin, 21(1), 58-75. https://doi.org/10.1177/0146167295211007
  • Kühn, F., Lichters, M., ve Krey, N. (2020). The touchy issue of produce: Need for touch in online grocery retailing. Journal of Business Research, 117, 244-255. https://doi.org/10.1016/j.jbusres.2020.05.017
  • Lin, H.-F. (2007). Predicting consumer intentions to shop online: An empirical test of competing theories. Electronic Commerce Research and Applications, 6(4), 433-442. https://doi.org/10.1016/j.elerap.2007.02.002
  • Lin, M.-J., ve Wang, W.-T. (2015). Examining e-commerce customer satisfaction and loyalty: An integrated quality-risk-value perspective. Journal of Organizational Computing and Electronic Commerce, 25(4), 379-401. https://doi.org/10.1080/10919392.2015.1089681
  • MacKenzie, S. B., ve Podsakoff, P. M. (2012). Common method bias in marketing: Causes, mechanisms, and procedural remedies. Journal of Retailing, 88(4), 542-555. https://doi.org/10.1016/j.jretai.2012.08.001
  • Malhotra, N. K. (2019). Marketing Research: An Applied Orientation. (Seventh edition) Pearson Education Limited.
  • Moon, J.-W., ve Kim, Y.-G. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38(4), 217-230. https://doi.org/10.1016/S0378-7206(00)00061-6
  • Mortimer, G., Fazal e Hasan, Syed, Andrews, Lynda, ve Martin, J. (2016). Online grocery shopping: The impact of shopping frequency on perceived risk. The International Review of Retail, Distribution and Consumer Research, 26(2), 202-223. https://doi.org/10.1080/09593969.2015.1130737
  • Mou, J., Shin, D.-H., ve Cohen, J. F. (2017). Trust and risk in consumer acceptance of e-services. Electronic Commerce Research, 17(2), 255-288. https://doi.org/10.1007/s10660-015-9205-4
  • Nguyen, T. T. H., Nguyen, N., Nguyen, T. B. L., Phan, T. T. H., Bui, L. P., ve Moon, H. C. (2019). Investigating consumer attitude and intention towards online food purchasing in an emerging economy: An extended TAM approach. Foods, 8(11), 576. https://doi.org/10.3390/foods8110576
  • Nguyen, T. T., Thi Thu Truong, H., ve Le-Anh, T. (2023). Online purchase intention under the integration of theory of planned behavior and technology acceptance model. SAGE Open, 13(4), 21582440231218814. https://doi.org/10.1177/21582440231218814
  • Paul, J., Modi, A., ve Patel, J. (2016). Predicting green product consumption using theory of planned behavior and reasoned action. Journal of Retailing and Consumer Services, 29, 123-134. https://doi.org/10.1016/j.jretconser.2015.11.006
  • Pavlou, P. A. (2001). Integrating trust in electronic commerce with the technology acceptance model: Model development and validation. AMCIS 2001 Proceedings. https://aisel.aisnet.org/amcis2001/159
  • Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134. https://doi.org/10.1080/10864415.2003.11044275
  • Peck, J., ve Childers, T. L. (2003). Individual differences in haptic information processing: The “Need for Touch” scale. Journal of Consumer Research, 30(3), 430-442. https://doi.org/10.1086/378619
  • Pillai, S. G., Kim, W. G., Haldorai, K., ve Kim, H.-S. (2022). Online food delivery services and consumers' purchase intention: Integration of theory of planned behavior, theory of perceived risk, and the elaboration likelihood model. International Journal of Hospitality Management, 105, 103275. https://doi.org/10.1016/j.ijhm.2022.103275
  • Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., ve Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. https://doi.org/10.1037/0021-9010.88.5.879
  • Podsakoff, P. M., MacKenzie, S. B., ve Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63(Volume 63, 2012), 539-569. https://doi.org/10.1146/annurev-psych-120710-100452
  • Ranganathan, C., ve Ganapathy, S. (2002). Key dimensions of business-to-consumer web sites. Information & Management, 39(6), 457-465. https://doi.org/10.1016/S0378-7206(01)00112-4
  • Richardson, H. A., Simmering, M. J., ve Sturman, M. C. (2009). A tale of three perspectives: Examining post hoc statistical techniques for detection and correction of common method variance. Organizational Research Methods, 12(4), 762-800. https://doi.org/10.1177/1094428109332834
  • Saoula, O., Shamim, A., Mohd Suki, N., Ahmad, M. J., Abid, M. F., Patwary, A. K., ve Abbasi, A. Z. (2023). Building e-trust and e-retention in online shopping: The role of website design, reliability and perceived ease of use. Spanish Journal of Marketing - ESIC, 27(2), 178-201. https://doi.org/10.1108/SJME-07-2022-0159
  • Seçer, A., Yazar, F., ve Bulut, M. (2023). Evaluation of consumers’ motivations to do online food shopping in Turkey. British Food Journal, 125(10), 3832-3852. https://doi.org/10.1108/BFJ-01-2023-0048
  • Statista. (2025). Global Retail E-Commerce Sales 2022-2028. Statista. https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
  • Tanyeri, M. T., ve Arısoy, H. (2023). Tüketicilerin meyve ve sebze tüketim alışkanlıklarının belirlenmesi: Ankara ili örneği. Tarım Ekonomisi Araştırmaları Dergisi, 9(1), 27-42. https://dergipark.org.tr/tr/pub/tead/issue/78315/1268596
  • Ticaret Bakanlığı. (2025). Türkiye’de E-Ticaretin Görünümü. https://ticaret.gov.tr/data/681a16de13b8762dd8da6b66/T%C4%B0CARET%20BAKANLI%C4%9EI%20T%C3%9CRK%C4%B0YE'DE%20E%20-%20T%C4%B0CARET%C4%B0N%20G%C3%96R%C3%9CN%C3%9CM%C3%9C%20RAPORU.pdf#page=30.12
  • Van der Heijden, H., Verhagen, T., ve Creemers, M. (2003). Understanding online purchase intentions: Contributions from technology and trust perspectives. European Journal of Information Systems, 12(1), 41-48. https://doi.org/10.1057/palgrave.ejis.3000445
  • Van Droogenbroeck, E., ve Van Hove, L. (2021). Adoption and usage of e-grocery shopping: A context-specific UTAUT2 model. Sustainability, 13(8), 4144. https://doi.org/10.3390/su13084144
  • Verhoef, P. C., ve Langerak, F. (2001). Possible determinants of consumers’ adoption of electronic grocery shopping in the Netherlands. Journal of Retailing and Consumer Services, 8(5), 275-285. https://doi.org/10.1016/S0969-6989(00)00033-3
  • Wei, Y., Wang, C., Zhu, S., Xue, H., ve Chen, F. (2018). Online purchase intention of fruits: Antecedents in an integrated model based on technology acceptance model and perceived risk theory. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01521
  • Xing, J., Zhang, J., ve Wang, X. (2024). Understanding the Chinese online fresh agricultural market through the extended technology acceptance model: The moderating role of food safety trust. Asia Pacific Journal of Marketing and Logistics, 36(7), 1576-1594. https://doi.org/10.1108/APJML-08-2023-0794
  • Yılmaz, Ö. (2018). Tüketicilerin online alışveriş niyetlerinin teknoloji kabul modeli bağlamında incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20(3), 331-346. https://doi.org/10.32709/akusosbil.478718
  • Yousafzai, S. Y., Foxall, G. R., ve Pallister, J. G. (2007). Technology acceptance: A meta‐analysis of the TAM: Part 2. Journal of Modelling in Management, 2(3), 281-304. https://doi.org/10.1108/17465660710834462
  • Zhao, K., Shi, H., Zhang, Y. Y., ve Sheng, J. (2021). Fresh produce e-commerce and online shoppers’ purchase intention. The Chinese Economy, 54(6), 415-429. https://doi.org/10.1080/10971475.2021.1890359
  • Zikmund, W. G. (1997). Business Research Methods. (Fifth edition). The Dryden Press.

Çevrim İçi Taze Meyve ve Sebze Satın Alma Niyeti: Güven ve Algılanan Riskin Entegre Edildiği Teknoloji Kabul Modelinde Dokunsal Girdi İhtiyacının Düzenleyici Rolü

Yıl 2025, Cilt: 11 Sayı: 2, 124 - 143, 30.12.2025
https://doi.org/10.61513/tead.1770856

Öz

Bu çalışma tüketicilerin çevrim içi taze meyve ve sebze satın alma niyetleri üzerinde etkili olan faktörleri incelemektir. Bu doğrultuda Teknoloji Kabul Modeli güven, algılanan risk ve dokunsal girdi ihtiyacı faktörleri ile birleştirilerek bir araştırma modeli geliştirilmiştir. Bu genişletilmiş teorik modelde yer alan hipotezleri test etmek amacıyla anket aracılığıyla 493 kişiden veri toplanmıştır. Verilerin analizi için yapısal eşitlik modellemesi uygulanmıştır. Sonuçlar, çevrim içi taze tarım ürünleri satın alma niyetini değerlendirmede genişletilen Teknoloji Kabul Modelinin uygulanabilirliğini ortaya koymaktadır. Daha ayrıntılı olarak sonuçlar, algılanan kullanım kolaylığının algılanan faydayı önemli ölçüde olumlu yönde etkilediğini göstermektedir. Sonuçlar aynı zamanda algılanan fayda, algılanan kullanım kolaylığı, güven ve algılanan riskin tutum üzerinde önemli etkileri olduğunu göstermektedir. Bu faktörler arasında güven en büyük etkiyi göstermektedir. Ayrıca sonuçlar algılanan faydanın, tutumun ve algılanan riskin çevrim içi taze meyve ve sebze satın alma niyetini önemli ölçüde etkilediğini göstermektedir. Bunlar arasında algılanan risk çevrim içi satın alma niyetini azaltırken, tutum ise en büyük etkiyi göstermektedir. Son olarak sonuçlarda dokunsal girdi ihtiyacı algılanan risk ile satın alma niyeti arasındaki ilişkide önemli bir düzenleyici rol oynamaktadır. Buna göre tüketicinin dokunsal girdi ihtiyacı yüksek olduğunda taze meyve ve sebze ürünleri için algılanan riskin çevrim içi taze meyve ve sebze satın alma niyeti üzerindeki negatif etkisi artmaktadır. Bu sonuçlar bir araya getirildiğinde, meyve ve sebze e-perakendecileri, çevrimiçi alışverişin sunduğu zaman tasarrufu, çeşitlilik ve kolaylığı vurgulayan iletişim çabalarının yanı sıra, verimlilik ve etkinliği ön plana çıkaran programlar geliştirmeye odaklanırken, aynı zamanda tüketici güvenini artırmak ve risk algısını azaltmak için çaba sarf etmeleri gerekmektedir.

Etik Beyan

Araştırma sahasında kullanılan anket formu için Harran üniversitesi Sosyal ve Beşeri Bilimler Etik Kurulu'ndan 12.07.2024 tarihinde 2024/170 numaralı onay alınmıştır.

Teşekkür

Anket formunun sahada uygulanması sırasında emeği geçen Harran Üniversitesi, Ziraat Fakültesi, Tarım Ekonomisi bölümü lisans ve lisans üstü öğrencilerine teşekkür ediyorum.

Kaynakça

  • Ahmed, N., Li, C., Khan, A., Qalati, S. A., Naz, S., ve Rana, F. (2021). Purchase intention toward organic food among young consumers using theory of planned behavior: Role of environmental concerns and environmental awareness. Journal of Environmental Planning and Management, 64(5), 796-822. https://doi.org/10.1080/09640568.2020.1785404
  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
  • Akar, E. (2024). Digital consumerism in times of crisis: Exploring the shift in online shopping behaviour. British Food Journal, 126(9), 3441-3462. https://doi.org/10.1108/BFJ-01-2024-0021
  • Amirtha, R., ve Sivakumar, V. J. (2018). Does family life cycle stage influence e-shopping acceptance by Indian women? An examination using the technology acceptance model. Behaviour & Information Technology, 37(3), 267-294. https://doi.org/10.1080/0144929X.2018.1434560
  • Anderson, J. C., ve Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. https://doi.org/10.1037/0033-2909.103.3.411
  • Bagozzi, R. P., ve Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
  • Balaji, M. S., Raghavan, S., ve Jha, S. (2011). Role of tactile and visual inputs in product evaluation: A multisensory perspective. Asia Pacific Journal of Marketing and Logistics, 23(4), 513-530. https://doi.org/10.1108/13555851111165066
  • Bauerová, R., ve Klepek, M. (2018). Technology acceptance as a determinant of online grocery shopping adoption. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(3), 737-746. https://doi.org/10.11118/actaun201866030737
  • Benavides-Espinosa, M. del M., Ribeiro-Soriano, D., ve Gieure, C. (2024). How can agrifood businesses improve their performance? The role of digital transformation. British Food Journal, 126(4), 1682-1697. https://doi.org/10.1108/BFJ-06-2022-0541
  • Bhatnagar, A., Misra, S., ve Rao, H. R. (2000). On risk, convenience, and Internet shopping behavior. Communications of the ACM, 43(11), 98-105. https://doi.org/10.1145/353360.353371
  • Bilgihan, A. (2016). Gen Y customer loyalty in online shopping: An integrated model of trust, user experience and branding. Computers in Human Behavior, 61, 103-113. https://doi.org/10.1016/j.chb.2016.03.014
  • Buldeo Rai, H. (2021). The net environmental impact of online shopping, beyond the substitution bias. Journal of Transport Geography, 93, 103058. https://doi.org/10.1016/j.jtrangeo.2021.103058
  • Cang, Y., ve Wang, D. (2021). A comparative study on the online shopping willingness of fresh agricultural products between experienced consumers and potential consumers. Sustainable Computing: Informatics and Systems, 30, 100493. https://doi.org/10.1016/j.suscom.2020.100493
  • Chen, L., Rashidin, M. S., Song, F., Wang, Y., Javed, S., ve Wang, J. (2021). Determinants of consumer's purchase intention on fresh e-commerce platform: Perspective of UTAUT model. SAGE Open, 11(2), 21582440211027875. https://doi.org/10.1177/21582440211027875
  • Citrin, A. V., Stem, D. E., Spangenberg, E. R., ve Clark, M. J. (2003). Consumer need for tactile input: An internet retailing challenge. Journal of Business Research, 56(11), 915-922. https://doi.org/10.1016/S0148-2963(01)00278-8
  • Collier, J. E. (2020). Applied Structural Equation Modeling Using AMOS: Basic to Advanced Techniques. (First edition). Routledge.
  • Cui, L., He, S., Deng, H., ve Wang, X. (2022). Sustaining customer loyalty of fresh food e-tailers: An empirical study in China. Asia Pacific Journal of Marketing and Logistics, 35(3), 669-686. https://doi.org/10.1108/APJML-01-2022-0013
  • Çelik, H., ve Yilmaz, V. (2011). Extending the technology acceptance model for adoption of e-shopping by consumers in Turkey. Journal of Electronic Commerce Research, 12, 152-164.
  • Davis, F. D. (1989). Perceived usefulness, perceived Ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. JSTOR. https://doi.org/10.2307/249008
  • Davis, F. D., Bagozzi, R. P., ve Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
  • ECDB. (2025). Fruits & Vegetables eCommerce Market in Turkey—Data & Trends. https://ecommercedb.com/markets/tr/fruits-vegetables
  • Featherman, M. S., ve Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. https://doi.org/10.1016/S1071-5819(03)00111-3
  • Fornell, C., ve Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Gatter, S., Hüttl-Maack, V., ve Rauschnabel, P. A. (2022). Can augmented reality satisfy consumers’ need for touch? Psychology & Marketing, 39(3), 508-523. https://doi.org/10.1002/mar.21618
  • George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and feference (16th ed.). Routledge.
  • Gürün, S., ve Tümer, E. İ. (2023). Tüketicilerin yöresel ürünleri internet üzerinden satın alma ve pazarlama istekliliğini etkileyen faktörler. Türkiye Tarımsal Araştırmalar Dergisi, 10(1), 101-108. https://doi.org/10.19159/tutad.1247343
  • Hair, J. F., Black, W. C., Babin, B. J., ve Anderson, R. E. (2014). Multivariate Data Analysis (Seventh edition). Pearson Pub.
  • Hansen, T. (2008). Consumer values, the theory of planned behaviour and online grocery shopping. International Journal of Consumer Studies, 32(2), 128-137. https://doi.org/10.1111/j.1470-6431.2007.00655.x
  • Hansen, T., Møller Jensen, J., ve Stubbe Solgaard, H. (2004). Predicting online grocery buying intention: A comparison of the theory of reasoned action and the theory of planned behavior. International Journal of Information Management, 24(6), 539-550. https://doi.org/10.1016/j.ijinfomgt.2004.08.004
  • Haşıloğlu, S. B., Baran, T. ve Aydın, O. (2015). Pazarlama araştırmalarındaki potansiyel problemlere yönelik bir araştırma: Kolayda örnekleme ve sıklık ifadeli ölçek maddeleri. Pamukkale İşletme ve Bilişim Yönetimi Dergisi, 2(1), 19-28. https://dergipark.org.tr/tr/pub/pibyd/issue/35465/394010
  • Huang, Y., ve Oppewal, H. (2006). Why consumers hesitate to shop online: An experimental choice analysis of grocery shopping and the role of delivery fees. International Journal of Retail & Distribution Management, 34(4-5), 334-353. https://doi.org/10.1108/09590550610660260
  • İşcioğlu, T. E. (2018). Sanal market alışverişi niyetinin sürekliliğini etkileyen unsurlar ve bir model önerisi. Pazarlama ve Pazarlama Araştırmaları Dergisi, 11(21), 99-124. https://dergipark.org.tr/en/pub/ppad/issue/60998/906009
  • Jarvenpaa, S. L., Tractinsky, N., ve Vitale, M. (2000). Consumer trust in an Internet store. Information Technology and Management, 1(1), 45-71. https://doi.org/10.1023/A:1019104520776
  • Jin, S., Li, H., ve Li, Y. (2017). Preferences of Chinese consumers for the attributes of fresh produce portfolios in an e-commerce environment. British Food Journal, 119(4), 817-829. https://doi.org/10.1108/BFJ-09-2016-0424
  • Kim, D. J., Ferrin, D. L., ve Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564. https://doi.org/10.1016/j.dss.2007.07.001
  • Kim, Y. G., ve Woo, E. (2016). Consumer acceptance of a quick response (QR) code for the food traceability system: Application of an extended technology acceptance model (TAM). Food Research International, 85, 266-272. https://doi.org/10.1016/j.foodres.2016.05.002
  • Kline, R. B. (2015). Principles and practice of structural equation modeling (4. bs). Guilford Publications.
  • Klopping, I., ve McKinney, E. (2004). Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Information Technology, Learning, and Performance Journal, 22(1), 35-48. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=139ba3d65ee258eb40d776617d181c5dd2fb1d90
  • Kock, F., Berbekova, A., ve Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 104330. https://doi.org/10.1016/j.tourman.2021.104330
  • Kotchen, M. J., ve Reiling, S. D. (2000). Environmental attitudes, motivations, and contingent valuation of nonuse values: A case study involving endangered species. Ecological Economics, 32(1), 93-107. https://doi.org/10.1016/S0921-8009(99)00069-5
  • Kraus, S. J. (1995). Attitudes and the prediction of behavior: A meta-analysis of the empirical literature. Personality and Social Psychology Bulletin, 21(1), 58-75. https://doi.org/10.1177/0146167295211007
  • Kühn, F., Lichters, M., ve Krey, N. (2020). The touchy issue of produce: Need for touch in online grocery retailing. Journal of Business Research, 117, 244-255. https://doi.org/10.1016/j.jbusres.2020.05.017
  • Lin, H.-F. (2007). Predicting consumer intentions to shop online: An empirical test of competing theories. Electronic Commerce Research and Applications, 6(4), 433-442. https://doi.org/10.1016/j.elerap.2007.02.002
  • Lin, M.-J., ve Wang, W.-T. (2015). Examining e-commerce customer satisfaction and loyalty: An integrated quality-risk-value perspective. Journal of Organizational Computing and Electronic Commerce, 25(4), 379-401. https://doi.org/10.1080/10919392.2015.1089681
  • MacKenzie, S. B., ve Podsakoff, P. M. (2012). Common method bias in marketing: Causes, mechanisms, and procedural remedies. Journal of Retailing, 88(4), 542-555. https://doi.org/10.1016/j.jretai.2012.08.001
  • Malhotra, N. K. (2019). Marketing Research: An Applied Orientation. (Seventh edition) Pearson Education Limited.
  • Moon, J.-W., ve Kim, Y.-G. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38(4), 217-230. https://doi.org/10.1016/S0378-7206(00)00061-6
  • Mortimer, G., Fazal e Hasan, Syed, Andrews, Lynda, ve Martin, J. (2016). Online grocery shopping: The impact of shopping frequency on perceived risk. The International Review of Retail, Distribution and Consumer Research, 26(2), 202-223. https://doi.org/10.1080/09593969.2015.1130737
  • Mou, J., Shin, D.-H., ve Cohen, J. F. (2017). Trust and risk in consumer acceptance of e-services. Electronic Commerce Research, 17(2), 255-288. https://doi.org/10.1007/s10660-015-9205-4
  • Nguyen, T. T. H., Nguyen, N., Nguyen, T. B. L., Phan, T. T. H., Bui, L. P., ve Moon, H. C. (2019). Investigating consumer attitude and intention towards online food purchasing in an emerging economy: An extended TAM approach. Foods, 8(11), 576. https://doi.org/10.3390/foods8110576
  • Nguyen, T. T., Thi Thu Truong, H., ve Le-Anh, T. (2023). Online purchase intention under the integration of theory of planned behavior and technology acceptance model. SAGE Open, 13(4), 21582440231218814. https://doi.org/10.1177/21582440231218814
  • Paul, J., Modi, A., ve Patel, J. (2016). Predicting green product consumption using theory of planned behavior and reasoned action. Journal of Retailing and Consumer Services, 29, 123-134. https://doi.org/10.1016/j.jretconser.2015.11.006
  • Pavlou, P. A. (2001). Integrating trust in electronic commerce with the technology acceptance model: Model development and validation. AMCIS 2001 Proceedings. https://aisel.aisnet.org/amcis2001/159
  • Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134. https://doi.org/10.1080/10864415.2003.11044275
  • Peck, J., ve Childers, T. L. (2003). Individual differences in haptic information processing: The “Need for Touch” scale. Journal of Consumer Research, 30(3), 430-442. https://doi.org/10.1086/378619
  • Pillai, S. G., Kim, W. G., Haldorai, K., ve Kim, H.-S. (2022). Online food delivery services and consumers' purchase intention: Integration of theory of planned behavior, theory of perceived risk, and the elaboration likelihood model. International Journal of Hospitality Management, 105, 103275. https://doi.org/10.1016/j.ijhm.2022.103275
  • Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., ve Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. https://doi.org/10.1037/0021-9010.88.5.879
  • Podsakoff, P. M., MacKenzie, S. B., ve Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63(Volume 63, 2012), 539-569. https://doi.org/10.1146/annurev-psych-120710-100452
  • Ranganathan, C., ve Ganapathy, S. (2002). Key dimensions of business-to-consumer web sites. Information & Management, 39(6), 457-465. https://doi.org/10.1016/S0378-7206(01)00112-4
  • Richardson, H. A., Simmering, M. J., ve Sturman, M. C. (2009). A tale of three perspectives: Examining post hoc statistical techniques for detection and correction of common method variance. Organizational Research Methods, 12(4), 762-800. https://doi.org/10.1177/1094428109332834
  • Saoula, O., Shamim, A., Mohd Suki, N., Ahmad, M. J., Abid, M. F., Patwary, A. K., ve Abbasi, A. Z. (2023). Building e-trust and e-retention in online shopping: The role of website design, reliability and perceived ease of use. Spanish Journal of Marketing - ESIC, 27(2), 178-201. https://doi.org/10.1108/SJME-07-2022-0159
  • Seçer, A., Yazar, F., ve Bulut, M. (2023). Evaluation of consumers’ motivations to do online food shopping in Turkey. British Food Journal, 125(10), 3832-3852. https://doi.org/10.1108/BFJ-01-2023-0048
  • Statista. (2025). Global Retail E-Commerce Sales 2022-2028. Statista. https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
  • Tanyeri, M. T., ve Arısoy, H. (2023). Tüketicilerin meyve ve sebze tüketim alışkanlıklarının belirlenmesi: Ankara ili örneği. Tarım Ekonomisi Araştırmaları Dergisi, 9(1), 27-42. https://dergipark.org.tr/tr/pub/tead/issue/78315/1268596
  • Ticaret Bakanlığı. (2025). Türkiye’de E-Ticaretin Görünümü. https://ticaret.gov.tr/data/681a16de13b8762dd8da6b66/T%C4%B0CARET%20BAKANLI%C4%9EI%20T%C3%9CRK%C4%B0YE'DE%20E%20-%20T%C4%B0CARET%C4%B0N%20G%C3%96R%C3%9CN%C3%9CM%C3%9C%20RAPORU.pdf#page=30.12
  • Van der Heijden, H., Verhagen, T., ve Creemers, M. (2003). Understanding online purchase intentions: Contributions from technology and trust perspectives. European Journal of Information Systems, 12(1), 41-48. https://doi.org/10.1057/palgrave.ejis.3000445
  • Van Droogenbroeck, E., ve Van Hove, L. (2021). Adoption and usage of e-grocery shopping: A context-specific UTAUT2 model. Sustainability, 13(8), 4144. https://doi.org/10.3390/su13084144
  • Verhoef, P. C., ve Langerak, F. (2001). Possible determinants of consumers’ adoption of electronic grocery shopping in the Netherlands. Journal of Retailing and Consumer Services, 8(5), 275-285. https://doi.org/10.1016/S0969-6989(00)00033-3
  • Wei, Y., Wang, C., Zhu, S., Xue, H., ve Chen, F. (2018). Online purchase intention of fruits: Antecedents in an integrated model based on technology acceptance model and perceived risk theory. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01521
  • Xing, J., Zhang, J., ve Wang, X. (2024). Understanding the Chinese online fresh agricultural market through the extended technology acceptance model: The moderating role of food safety trust. Asia Pacific Journal of Marketing and Logistics, 36(7), 1576-1594. https://doi.org/10.1108/APJML-08-2023-0794
  • Yılmaz, Ö. (2018). Tüketicilerin online alışveriş niyetlerinin teknoloji kabul modeli bağlamında incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20(3), 331-346. https://doi.org/10.32709/akusosbil.478718
  • Yousafzai, S. Y., Foxall, G. R., ve Pallister, J. G. (2007). Technology acceptance: A meta‐analysis of the TAM: Part 2. Journal of Modelling in Management, 2(3), 281-304. https://doi.org/10.1108/17465660710834462
  • Zhao, K., Shi, H., Zhang, Y. Y., ve Sheng, J. (2021). Fresh produce e-commerce and online shoppers’ purchase intention. The Chinese Economy, 54(6), 415-429. https://doi.org/10.1080/10971475.2021.1890359
  • Zikmund, W. G. (1997). Business Research Methods. (Fifth edition). The Dryden Press.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarımsal Pazarlama, Tüketici Davranışı, Tarım Politikaları
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Cançelik 0000-0001-8158-4455

Gönderilme Tarihi 23 Ağustos 2025
Kabul Tarihi 30 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Cançelik, M. (2025). Çevrim İçi Taze Meyve ve Sebze Satın Alma Niyeti: Güven ve Algılanan Riskin Entegre Edildiği Teknoloji Kabul Modelinde Dokunsal Girdi İhtiyacının Düzenleyici Rolü. Tarım Ekonomisi Araştırmaları Dergisi, 11(2), 124-143. https://doi.org/10.61513/tead.1770856