Araştırma Makalesi
BibTex RIS Kaynak Göster

Riskin Kuru Kayısı Üreten İşletmelerin Performansına Etkisi

Yıl 2020, Cilt: 6 Sayı: 2, 86 - 101, 15.12.2020

Öz

Sadece Türkiye’nin değil dünyanın da en büyük kayısı üretim bölgesi olan Malatya’da kuru kayısı üreten işletmeler birçok risk ve belirsizlikle karşı karşıyadır. İşletmeler, risklerle başa çıkmak için yoğun girdi kullanmakta ve bu da işletmelerde rasyonel kaynak kullanımını bozucu etki yapmaktadır. Sonuçta bu işletmeler etkinlik ve verimlilik adına önemli sorunlarla karşılaşmaktadır. Risk, üretim etkinliğini ve dolayısıyla işletme performansını belirleyen temel unsurlardan bir tanesi olmasına rağmen, Malatya ilinde ve hatta Türkiye’de yürütülen çalışmalarda tarımsal riskler ve etkinlik konusunun bir arada değerlendirilmediği görülmektedir. Araştırmanın ana amacı, Malatya ilinde yoğun kuru kayısı üretilen bir bölgede faaliyet gösteren tarım işletmelerinin performanslarını (etkinliklerini) ölçmek ve buna riskin etkisini analiz etmektir. Bölgeden rassal seçilmiş 50 işletmeden anket çalışması yoluyla 2016 üretim yılı için toplanan veriler kullanılmıştır. Kuru kayısı işletmelerinde etkinlik skorlarında ki değişim, “Stokastik Sınır Analizi” yöntemi ile tahmin edilmiştir. İşletmelerin performansına etkisini analiz etmek amacıyla risk değişkenleri olarak üreticin risk karşıtlığı düzeyi ile risk kaynakları ve risk yönetim stratejileri kullanılmıştır. Araştırmada, işletmelerde ortalama etkinlik düzeyi (performansı) %80 olarak tahmin edilmiştir. İşletmelerin etkinliğine sadece üretimde kullanılan tekniğin değil, sosyoekonomik değişkenlerle birlikte risk tutumları ve risk kaynakları ile risk stratejilerinin de etkisi olduğu belirlenmiştir.

Destekleyen Kurum

TÜBİTAK-SOBAG

Proje Numarası

114K539

Teşekkür

Destekleri için TÜBİTAK’a sonsuz teşekkür ederiz.

Kaynakça

  • Aigner, D.J., Lovell, C.A.K., Schmidt, P., 1977. Formulation and Estimation of Stochastic Frontier Production Function Models, Journal of Econometrics, 6:21-37.
  • Battese, G., Coelli, T., 1995. A model for Technical İnefficiency Effects in a Stochastic Frontier Production Function for Panel Data, Empirical Economics, 2: 325–332.
  • Battese, G.E., Corra, G.S., 1977. Estimation of a Production Frontier Model: With Application to the Pastoral Zone of Eastern Australia, Australian Journal of Agricultural Economics, 21, 169-179
  • Battese, G.E., Rao, D.S.P., 2002. Technology Gap, Efficiency and a Stochastic Metafrontier Function, International Journal of Business and Economics, 1 (2):1-7.
  • Binici, T., Koç, A., Bayaner, A., 2001. The Risk Attitudes of Farmers and The Socioeconomic Factors affecting them: A Case Study for Lower Seyhan Plain Farmers in Adana Province, Turkey. Ankara: The publication of Agricultural Economics Research Institute (In Turkish).
  • Bokusheva R., Hockmann, H., 2006., Production Risk and Technical Inefficiency in Russian Agriculture, European Review of Agricultural Economics, 33(1), 93–118.
  • Coelli, T.J., 2007. A Guide to Frontier Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation. CEPA, Armidale, Australia
  • Coelli, T.J., 1995. Recent Developments in Frontier Estimation and Efficiency Measurement, Australian Journal of Agricultural Economics, 39: 219–45.
  • Çukur, F., Saner, G., 2008. Malatya İli Kayısı Üretiminde Riskin Ölçülmesi ve Riske Karşı Oluşturulabilecek Stratejiler, Ege Üniversitesi Ziraat Fakültesi Dergisi, 46 (1), 33-42.
  • Demiryürek, K., Ceyhan, V., Bozoğlu, M., 2012. Risk Attitudes of Organic and Conventional Hazelnut Producers in Turkey, Human and Ecological Risk Assessment: An International Journal, 18 (2), 471-482.
  • Dhungana, B.R., Nuthall, P.L, Nartea, G.V., 2004. Measuring the Economic Inefficiency of Nepaleses Rice Farms Using Data Envelopment Analysis, The Australian Journal of Agricultural and Resource Economics 48(2): 347-369.
  • FAOSTAT, 2020. Dünya Tarım ve Gıda Örgütü İstatistikleri http://www.fao.org/faostat/en/ (Erişim: 03 Haziran 2020)
  • Field, A., 2000. Discovering Statistics Using SPSS for Windows. London. SAGE Publication.
  • Gunduz, O., Ceyhan, V., Esengun, K., 2011. Measuring the Technical and Economic Efficiencies of the Dry Apricot Farms in Turkey, Journal of Food, Agriculture & Environment, 9(1):319-324.
  • Gündüz, O., Ceyhan, V., Esengün, K., Dağdeviren, M., 2010. Kayısı Yetiştiriciliği Yapan İşletmelerde Ekonomik Etkinlik: Darende İlçesi Örneği, Türkiye IX. Tarım Ekonomisi Kongresi Bildiri Kitabı, 135-142.
  • Hardaker, J., Huirne, R., Anderson, J., Lien, G., 2004. Coping With Risk in Agriculture. CAB International, Cambridge, United Kingdom.
  • Helmers, G.A., 2003. Incorporating Risk in Efficiency Analysis, University of Nebreska Lincoln, http://digitalcommons.unl.edu/ageconworkpap/12 (Erişim: 20 Temmuz 2017).
  • INC, 2019. Uluslararası Fındık ve Kuru Meyveler Konseyi, web sayfası www.nutfruit.org (Erişim: 10 Mayıs 2019).
  • Jirgi, A.J., 2013. Technical Efficiency and Risk Preferences of Cropping Systems in Kebbi State, Nigeria, (unpublished PhD Thesis in Agricultural Economics), University of the Free State Faculty of Natural and Agricultural Sciences Department of Agricultural Economics, Bloemfontein, South Africa.
  • Just, R.E., Pope, R.D., 1979. Production Function Estimation and Related Risk Considerations, American Journal of Agricultural Economics, 61, 276–284.
  • Külekçi, M., Dönmez, R., Güler, M., 2016. Elazığ İli Kayısı Üretiminde Etkinliğin Belirlenmesi, Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 3: 130-136.
  • Lakner, S., Kirchweger, S., Hoop, D., Brümmer, B., Kantelhardt, J., 2018. Impact of Diversification on Technical Efficiency of Organic Farming in Switzerland, Austria and Southern Germany, Sustainability MDPI, 10 (4):1304.
  • Ligeon, C., Jolly, C., Bencheva, N., Delikostadinov, S., Puppala, N., 2013. Production Efficiency and Risks in Limited Resource Farming: The Case of Bulgarian Peanut Industry, Journal of Development and Agricultural Economics, 5(4),150-160.
  • Mariano, M.J., Villano, R. Fleming, E., 2011. Technical Efficiency of Rice Farms in Different Agroclimatic Zones in the Philippines: An Application of a Stochastic Metafrontier Model, Asian Economic Journal 25 (3): 245–269.
  • Meeusen, W., Van den Broeck, J., 1977. Efficiency Estimation from Cobb-Douglas Production Functions With Composed Error, International Economic Review, 18:435-444.
  • Mensah, A., Brümmer, B., 2016. Drivers of technical efficiency and technology gaps in Ghana’s mango production sector: A stochastic metafrontier approach, African Journal of Agricultural and Resource Economics, 11 (2): 101-117.
  • Ogundari, K., Akinbogun, O.O., 2010. Modeling Technical Efficiency with Production Risk: A Study of Fish Farms in Nigeria, Marine Resource Economics, 25(3), 295-308.
  • Rao, P., O’Donnell, C.,Battese, G. E., 2003. Metafrontier Functions for the Study of Inter-regional Productivity Differences, CEPA Working Papers WP032004, University of Queensland, Australia. (http://www.uq.edu.au/economics/cepa/docs/WP/WP012003.pdf (erişim: 15 Ağustos 2019).
  • Settlage, D.M., Preckel, P.V., Settlage, L.A., 2009. Risk-adjusted Efficiency and Risk Aversion in The Agricultural Banking Industry, Agricultural Finance Review, 69 (3), 314-329.
  • TCMB, 2020. Türkiye Cumhuriyet Merkez Bankası Elektronik Veri Dağıtım Sistemi. https://evds2.tcmb.gov.tr/index.php?/evds/portlet/hIdR20CDwM4%3D/tr (erişim: 10 Ekim 2020)
  • Tiedemann, T., Latacz-Lohmann, U., 2013. Production Risk and Technical Efficiency in Organic and Conventional Agriculture: The Case of Arable Farms in Germany, Journal of Agricultural Economics, 64(1), 013, 73–96.
  • TOB, 2020. Tarım ve Orman Bakanlığı Malatya İl Müdürlüğü Faaliyet Raporu. https://malatya.tarimorman.gov.tr/Belgeler/FAAL%C4%B0YETLER%C4%B0M%C4%B0Z/FAAL%C4%B0YETLER%C4%B0M%C4%B0Z%20TEMMUZ%202020.pdf (Erişim: 12 Eylül 2020)
  • Tveteras, R., 1999. Production Risk and Productivity Growth: Some Findings for Norwegian Salmon Aquaculture Journal of Productivity Analysis, 12,161–79.
  • Villano, R., Boshrabadi, H.M., Fleming, E., 2010. When is Metafrontier Analysis Appropriate? An Example of Varietal Differences in Pistachio Production in Iran, Journal of Agricultural Science and Technology, 12 (4), 379-389

Effect of the Risk on the Performance of the Dried Apricot Farm

Yıl 2020, Cilt: 6 Sayı: 2, 86 - 101, 15.12.2020

Öz

Dried apricot farms face many risks and uncertainties in Malatya, where is not only Turkey's but also the largest apricot production region in the world. To cope with the risks and uncertainties, farms have used excessive input and this has reason to disruptive effect of rational input utilization. And so, the farms faced the major problems for efficiency and productivity. Although, risk is one of the main important determinants on farm performance, agricultural risks and farms efficiencies has not yet been evaluated, together, in the studies carried out for Malatya, even if overall Turkey. The main purpose of this study was to measure the farm efficiencies in a zone where intensive producing dried apricot and to analyze the effect of the risk on this in Malatya. The data used in the research were collected from randomly selected 50 farms using questionnaire for the 2016 production period in the region. The change in efficiency scores in dried apricot farms was estimated using the Stochastic Frontier Analysis method. In order to analyze the effect on the performance of farms, the level of risk averse of the farmers, risk sources and risk management strategies were used as risk variables. In the study, the average efficiency level (performance) in farms was estimated to be 80%. It has been determined that not only the used production technique but also risk attitudes and risk sources and risk strategies together with socioeconomic variables cause the efficiency of the farms.

Proje Numarası

114K539

Kaynakça

  • Aigner, D.J., Lovell, C.A.K., Schmidt, P., 1977. Formulation and Estimation of Stochastic Frontier Production Function Models, Journal of Econometrics, 6:21-37.
  • Battese, G., Coelli, T., 1995. A model for Technical İnefficiency Effects in a Stochastic Frontier Production Function for Panel Data, Empirical Economics, 2: 325–332.
  • Battese, G.E., Corra, G.S., 1977. Estimation of a Production Frontier Model: With Application to the Pastoral Zone of Eastern Australia, Australian Journal of Agricultural Economics, 21, 169-179
  • Battese, G.E., Rao, D.S.P., 2002. Technology Gap, Efficiency and a Stochastic Metafrontier Function, International Journal of Business and Economics, 1 (2):1-7.
  • Binici, T., Koç, A., Bayaner, A., 2001. The Risk Attitudes of Farmers and The Socioeconomic Factors affecting them: A Case Study for Lower Seyhan Plain Farmers in Adana Province, Turkey. Ankara: The publication of Agricultural Economics Research Institute (In Turkish).
  • Bokusheva R., Hockmann, H., 2006., Production Risk and Technical Inefficiency in Russian Agriculture, European Review of Agricultural Economics, 33(1), 93–118.
  • Coelli, T.J., 2007. A Guide to Frontier Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation. CEPA, Armidale, Australia
  • Coelli, T.J., 1995. Recent Developments in Frontier Estimation and Efficiency Measurement, Australian Journal of Agricultural Economics, 39: 219–45.
  • Çukur, F., Saner, G., 2008. Malatya İli Kayısı Üretiminde Riskin Ölçülmesi ve Riske Karşı Oluşturulabilecek Stratejiler, Ege Üniversitesi Ziraat Fakültesi Dergisi, 46 (1), 33-42.
  • Demiryürek, K., Ceyhan, V., Bozoğlu, M., 2012. Risk Attitudes of Organic and Conventional Hazelnut Producers in Turkey, Human and Ecological Risk Assessment: An International Journal, 18 (2), 471-482.
  • Dhungana, B.R., Nuthall, P.L, Nartea, G.V., 2004. Measuring the Economic Inefficiency of Nepaleses Rice Farms Using Data Envelopment Analysis, The Australian Journal of Agricultural and Resource Economics 48(2): 347-369.
  • FAOSTAT, 2020. Dünya Tarım ve Gıda Örgütü İstatistikleri http://www.fao.org/faostat/en/ (Erişim: 03 Haziran 2020)
  • Field, A., 2000. Discovering Statistics Using SPSS for Windows. London. SAGE Publication.
  • Gunduz, O., Ceyhan, V., Esengun, K., 2011. Measuring the Technical and Economic Efficiencies of the Dry Apricot Farms in Turkey, Journal of Food, Agriculture & Environment, 9(1):319-324.
  • Gündüz, O., Ceyhan, V., Esengün, K., Dağdeviren, M., 2010. Kayısı Yetiştiriciliği Yapan İşletmelerde Ekonomik Etkinlik: Darende İlçesi Örneği, Türkiye IX. Tarım Ekonomisi Kongresi Bildiri Kitabı, 135-142.
  • Hardaker, J., Huirne, R., Anderson, J., Lien, G., 2004. Coping With Risk in Agriculture. CAB International, Cambridge, United Kingdom.
  • Helmers, G.A., 2003. Incorporating Risk in Efficiency Analysis, University of Nebreska Lincoln, http://digitalcommons.unl.edu/ageconworkpap/12 (Erişim: 20 Temmuz 2017).
  • INC, 2019. Uluslararası Fındık ve Kuru Meyveler Konseyi, web sayfası www.nutfruit.org (Erişim: 10 Mayıs 2019).
  • Jirgi, A.J., 2013. Technical Efficiency and Risk Preferences of Cropping Systems in Kebbi State, Nigeria, (unpublished PhD Thesis in Agricultural Economics), University of the Free State Faculty of Natural and Agricultural Sciences Department of Agricultural Economics, Bloemfontein, South Africa.
  • Just, R.E., Pope, R.D., 1979. Production Function Estimation and Related Risk Considerations, American Journal of Agricultural Economics, 61, 276–284.
  • Külekçi, M., Dönmez, R., Güler, M., 2016. Elazığ İli Kayısı Üretiminde Etkinliğin Belirlenmesi, Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 3: 130-136.
  • Lakner, S., Kirchweger, S., Hoop, D., Brümmer, B., Kantelhardt, J., 2018. Impact of Diversification on Technical Efficiency of Organic Farming in Switzerland, Austria and Southern Germany, Sustainability MDPI, 10 (4):1304.
  • Ligeon, C., Jolly, C., Bencheva, N., Delikostadinov, S., Puppala, N., 2013. Production Efficiency and Risks in Limited Resource Farming: The Case of Bulgarian Peanut Industry, Journal of Development and Agricultural Economics, 5(4),150-160.
  • Mariano, M.J., Villano, R. Fleming, E., 2011. Technical Efficiency of Rice Farms in Different Agroclimatic Zones in the Philippines: An Application of a Stochastic Metafrontier Model, Asian Economic Journal 25 (3): 245–269.
  • Meeusen, W., Van den Broeck, J., 1977. Efficiency Estimation from Cobb-Douglas Production Functions With Composed Error, International Economic Review, 18:435-444.
  • Mensah, A., Brümmer, B., 2016. Drivers of technical efficiency and technology gaps in Ghana’s mango production sector: A stochastic metafrontier approach, African Journal of Agricultural and Resource Economics, 11 (2): 101-117.
  • Ogundari, K., Akinbogun, O.O., 2010. Modeling Technical Efficiency with Production Risk: A Study of Fish Farms in Nigeria, Marine Resource Economics, 25(3), 295-308.
  • Rao, P., O’Donnell, C.,Battese, G. E., 2003. Metafrontier Functions for the Study of Inter-regional Productivity Differences, CEPA Working Papers WP032004, University of Queensland, Australia. (http://www.uq.edu.au/economics/cepa/docs/WP/WP012003.pdf (erişim: 15 Ağustos 2019).
  • Settlage, D.M., Preckel, P.V., Settlage, L.A., 2009. Risk-adjusted Efficiency and Risk Aversion in The Agricultural Banking Industry, Agricultural Finance Review, 69 (3), 314-329.
  • TCMB, 2020. Türkiye Cumhuriyet Merkez Bankası Elektronik Veri Dağıtım Sistemi. https://evds2.tcmb.gov.tr/index.php?/evds/portlet/hIdR20CDwM4%3D/tr (erişim: 10 Ekim 2020)
  • Tiedemann, T., Latacz-Lohmann, U., 2013. Production Risk and Technical Efficiency in Organic and Conventional Agriculture: The Case of Arable Farms in Germany, Journal of Agricultural Economics, 64(1), 013, 73–96.
  • TOB, 2020. Tarım ve Orman Bakanlığı Malatya İl Müdürlüğü Faaliyet Raporu. https://malatya.tarimorman.gov.tr/Belgeler/FAAL%C4%B0YETLER%C4%B0M%C4%B0Z/FAAL%C4%B0YETLER%C4%B0M%C4%B0Z%20TEMMUZ%202020.pdf (Erişim: 12 Eylül 2020)
  • Tveteras, R., 1999. Production Risk and Productivity Growth: Some Findings for Norwegian Salmon Aquaculture Journal of Productivity Analysis, 12,161–79.
  • Villano, R., Boshrabadi, H.M., Fleming, E., 2010. When is Metafrontier Analysis Appropriate? An Example of Varietal Differences in Pistachio Production in Iran, Journal of Agricultural Science and Technology, 12 (4), 379-389
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarım Politikaları
Bölüm Araştırma Makalesi
Yazarlar

Orhan Gündüz Bu kişi benim 0000-0002-2357-0802

Proje Numarası 114K539
Yayımlanma Tarihi 15 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 6 Sayı: 2

Kaynak Göster

APA Gündüz, O. (2020). Riskin Kuru Kayısı Üreten İşletmelerin Performansına Etkisi. Tarım Ekonomisi Araştırmaları Dergisi, 6(2), 86-101.