BibTex RIS Kaynak Göster

-

Yıl 2011, Cilt: 22 Sayı: 107, 5409 - 5423, 01.12.2011

Öz

Kaynakça

  • Neville, A.M., Properties of Concrete, Pearson Prentice Hall, Essex, 2004.
  • Broomfield, J.P., Corrosion of Steel in Concrete, E & FN Spon, London, 1997.
  • Taşdemir, M.A., Özkul, M.H. ve Atahan, H.N. Türkiye’deki Son Depremler ve Beton, II. Ulusal Kentsel Altyapı Sempozyumu, Adana, 9-20, 1999.
  • Gjİrv, O.E., Durability Design and Construction Quality of Concrete Structures, Fourth International Conference on Concrete Under Severe Conditions – Environment and Loading, Seoul, Korea, 44-55, 2004.
  • Gjİrv, O.E., Durability of Concrete Structures and Performance-Based Quality Control, International Conference on Performance of Construction Materials in the New Millennium, Cairo, 10 s, 2003.
  • TS EN 206, Beton - Bölüm 1: Özellik, Performans, İmalat ve Uygunluk, Türk Standartları Enstitüsü, 2004.
  • ACI Committee 318, ACI 318 Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Mich., 2008.
  • BS 8500-2, Concrete – Complementary British Standard to BS EN 206-1 – Part 2: Specification for Constituent Materials and Concrete, 2006.
  • TS EN 1992-1-1, Eurocode 2: Beton Yapıların Projelendirilmesi: Bölüm 1-1: Genel Kurallar ve Bina Kuralları. Türk Standartları Enstitüsü, 2005.
  • Cather, B. and Marsh, B., Service Life of Concrete Structures – Current and Emerging Approaches, International Seminar on the Management of Concrete Structures for Long Term Serviceability, Sheffield, 21-32, 1997.
  • ACI Committee 365, ACI 365 Service Life Prediction - State of the Art Report, American Concrete Institute, Farmington Hills, Mich., 2000.
  • ISO 13823, General Principles on the Design of Structures for Durability, International Organization for Standardization, 2008.
  • TS 500, Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, 2000 (Tadil 2002).
  • Mehta, P.K., Concrete in the Marine Environment, Elsevier Applied Science, Essex,
  • ISO 2394, General Principles on Reliability for Structures, International Organization for Standardization, 1998.
  • Hammersley, J.M. and Handscomb, D.C., Monte Carlo Methods, Methuen & Co Ltd, London, 1975.
  • Haugen, E.B., Probabilistic Mechanical Design, John Wiley & Sons, Inc., New York, 1980.
  • Neville, A.M., Chloride Attack of Reinforced Concrete: An Overview, Materials and Structures, 28, 63 – 70, 1995.
  • Poulsen, E. and Mejlbro, L., Diffusion of Chloride in Concrete. Taylor and Francis, London, 2006.
  • Collepardi, M., Marcialis, A. and Turriziani, R., Penetration of Chloride Ions into Cement Pastes and Concretes. Journal of American Ceramic Society, 55, 534-535, 1972.
  • Melchers, R.E., Structural Reliability – Analysis and Prediction. Ellis Horwood Limited, West Sussex, 1987.
  • Tuutti, K., Corrosion of Steel in Concrete. Swedish Cement and Concrete Research Institute, Stockholm, 1982.
  • Mays, G., Durability of Concrete Structures – Investigation, Repair, Protection. E&FN Spon, 1992.
  • Bamforth, P.B. and Price, W.F., Factors Influencing Chloride Ingress into Marine Concretes, International Conference - Concrete 2000, University of Dundee, Scotland, 1105 – 1118, 1993.
  • Thomas M.D.A. and Bamforth, P.B., Modelling Chloride Diffusion in Concrete – Effect of Fly Ash and Slag. Cement and Concrete Research, 29, 487-495, 1999.
  • Zhang, M.H., Bilodeau, A., Malhotra, V.M., Kim, K.S., and Kim, J.C., Concrete Incorporating Supplementary Cementing Materials: Effect on Compressive Strength and Resistance to Chloride Ion Penetration. ACI Materials Journal, 96, 181-189, 1999.
  • Sengul, O. and Gjİrv, O.E. Effect of Binder System on the Resistance of Concrete against Chloride Penetration. 8th International Symposium on Utilization of High- Strength and High-Performance Concrete, Tokyo, 330-335, 2008.
  • Song, Y.P., Song, L.Y. and Zhao, G.F., Factors Affecting Corrosion and Approaches for Improving Durability of Ocean Reinforced Concrete Structures. Engineering, 31, 779–789, 2004. Ocean
  • Ann, K.Y., Ahn, J.H. and Ryou, J.S., The Importance of Chloride Content at the Concrete Surface in Assessing the Time to Corrosion of Steel in Concrete Structures. Construction and Building Materials, 23, 239–245, 2009.
  • Fluge, F., Marine chlorides – A Probabilistic Approach to Derive Provisions to EN 206-1. Workshop on Service Life Design of Concrete Structures, Tromso, 48-68,
  • Glass, G.K. and Buenfeld, N.R. The Presentation of the Chloride Threshold Level for Corrosion of Steel in Concrete. Corrosion Science, 39, 1001 – 1013, 1997.
  • Polder, R.B. and Rooij, M.R. Durability of Marine Concrete Structures – Field Investigations and Modelling. Heron, 50, 133-153, 2005.
  • Bamforth, P.B., The Derivation of Input Data for Modelling Chloride Ingress from Eight-Year Coastal Exposure Trials. Magazine of Concrete Research, 51, 87-96, 1999.
  • Mangat, P.S. and Molloy, B.T., Prediction of Long-Term Chloride Concentration in Concrete. Materials and Structures, 27, 338-346, 1994.
  • Page, C.L. and Page, M.M., Durability of Concrete and Cement Composites. Woodhead Publishing, Cambridge, 2007.
  • Helland, S., Service Life of Concrete Offshore Structures. Structural Concrete, 2, 121–125, 2001.
  • Stewart, M.G. and Rosowsky, D.V., Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks. Structural Safety, 20, 91-109, 1998.

KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM

Yıl 2011, Cilt: 22 Sayı: 107, 5409 - 5423, 01.12.2011

Öz

Klor etkisinde kalacak betonarme bir yapının uzun servis ömrüne sahip olması ve bu ömrün belirlenebilmesi için dayanıklılığa göre tasarım gereklidir. Böyle bir tasarımda klor iyonu yayınımı matematiksel bir model ile ifade edilmeli ve parametreler gerçekci bir şekilde belirlenerek bu modele eklenmelidir. Olasılığa dayalı bir yöntem kullanılarak hem yapının maruz kaldığı çevresel etkiler, hem de yapı özelliklerindeki dağılımlar dikkate alınmalıdır. Bu çalışmanın temel amacı klor iyonu bulunan ortamlarda kalacak yapıların dayanıklılığa (dürabiliteye) göre tasarımıdır. Çalışmada, klor iyonlarının beton içine girişi ve taşınımı Fick’in 2. yasası ile modellendi ve yapı özelliklerindeki ve çevresel etkilerdeki dağılımları Monte Carlo analizi ile dikkate alan basit bir yazılım hazırlandı. Ayrıca, korozyonu önemli oranda etkileyen yapısal parametrelerin dürabiliteye etkileri irdelendi

Kaynakça

  • Neville, A.M., Properties of Concrete, Pearson Prentice Hall, Essex, 2004.
  • Broomfield, J.P., Corrosion of Steel in Concrete, E & FN Spon, London, 1997.
  • Taşdemir, M.A., Özkul, M.H. ve Atahan, H.N. Türkiye’deki Son Depremler ve Beton, II. Ulusal Kentsel Altyapı Sempozyumu, Adana, 9-20, 1999.
  • Gjİrv, O.E., Durability Design and Construction Quality of Concrete Structures, Fourth International Conference on Concrete Under Severe Conditions – Environment and Loading, Seoul, Korea, 44-55, 2004.
  • Gjİrv, O.E., Durability of Concrete Structures and Performance-Based Quality Control, International Conference on Performance of Construction Materials in the New Millennium, Cairo, 10 s, 2003.
  • TS EN 206, Beton - Bölüm 1: Özellik, Performans, İmalat ve Uygunluk, Türk Standartları Enstitüsü, 2004.
  • ACI Committee 318, ACI 318 Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Mich., 2008.
  • BS 8500-2, Concrete – Complementary British Standard to BS EN 206-1 – Part 2: Specification for Constituent Materials and Concrete, 2006.
  • TS EN 1992-1-1, Eurocode 2: Beton Yapıların Projelendirilmesi: Bölüm 1-1: Genel Kurallar ve Bina Kuralları. Türk Standartları Enstitüsü, 2005.
  • Cather, B. and Marsh, B., Service Life of Concrete Structures – Current and Emerging Approaches, International Seminar on the Management of Concrete Structures for Long Term Serviceability, Sheffield, 21-32, 1997.
  • ACI Committee 365, ACI 365 Service Life Prediction - State of the Art Report, American Concrete Institute, Farmington Hills, Mich., 2000.
  • ISO 13823, General Principles on the Design of Structures for Durability, International Organization for Standardization, 2008.
  • TS 500, Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, 2000 (Tadil 2002).
  • Mehta, P.K., Concrete in the Marine Environment, Elsevier Applied Science, Essex,
  • ISO 2394, General Principles on Reliability for Structures, International Organization for Standardization, 1998.
  • Hammersley, J.M. and Handscomb, D.C., Monte Carlo Methods, Methuen & Co Ltd, London, 1975.
  • Haugen, E.B., Probabilistic Mechanical Design, John Wiley & Sons, Inc., New York, 1980.
  • Neville, A.M., Chloride Attack of Reinforced Concrete: An Overview, Materials and Structures, 28, 63 – 70, 1995.
  • Poulsen, E. and Mejlbro, L., Diffusion of Chloride in Concrete. Taylor and Francis, London, 2006.
  • Collepardi, M., Marcialis, A. and Turriziani, R., Penetration of Chloride Ions into Cement Pastes and Concretes. Journal of American Ceramic Society, 55, 534-535, 1972.
  • Melchers, R.E., Structural Reliability – Analysis and Prediction. Ellis Horwood Limited, West Sussex, 1987.
  • Tuutti, K., Corrosion of Steel in Concrete. Swedish Cement and Concrete Research Institute, Stockholm, 1982.
  • Mays, G., Durability of Concrete Structures – Investigation, Repair, Protection. E&FN Spon, 1992.
  • Bamforth, P.B. and Price, W.F., Factors Influencing Chloride Ingress into Marine Concretes, International Conference - Concrete 2000, University of Dundee, Scotland, 1105 – 1118, 1993.
  • Thomas M.D.A. and Bamforth, P.B., Modelling Chloride Diffusion in Concrete – Effect of Fly Ash and Slag. Cement and Concrete Research, 29, 487-495, 1999.
  • Zhang, M.H., Bilodeau, A., Malhotra, V.M., Kim, K.S., and Kim, J.C., Concrete Incorporating Supplementary Cementing Materials: Effect on Compressive Strength and Resistance to Chloride Ion Penetration. ACI Materials Journal, 96, 181-189, 1999.
  • Sengul, O. and Gjİrv, O.E. Effect of Binder System on the Resistance of Concrete against Chloride Penetration. 8th International Symposium on Utilization of High- Strength and High-Performance Concrete, Tokyo, 330-335, 2008.
  • Song, Y.P., Song, L.Y. and Zhao, G.F., Factors Affecting Corrosion and Approaches for Improving Durability of Ocean Reinforced Concrete Structures. Engineering, 31, 779–789, 2004. Ocean
  • Ann, K.Y., Ahn, J.H. and Ryou, J.S., The Importance of Chloride Content at the Concrete Surface in Assessing the Time to Corrosion of Steel in Concrete Structures. Construction and Building Materials, 23, 239–245, 2009.
  • Fluge, F., Marine chlorides – A Probabilistic Approach to Derive Provisions to EN 206-1. Workshop on Service Life Design of Concrete Structures, Tromso, 48-68,
  • Glass, G.K. and Buenfeld, N.R. The Presentation of the Chloride Threshold Level for Corrosion of Steel in Concrete. Corrosion Science, 39, 1001 – 1013, 1997.
  • Polder, R.B. and Rooij, M.R. Durability of Marine Concrete Structures – Field Investigations and Modelling. Heron, 50, 133-153, 2005.
  • Bamforth, P.B., The Derivation of Input Data for Modelling Chloride Ingress from Eight-Year Coastal Exposure Trials. Magazine of Concrete Research, 51, 87-96, 1999.
  • Mangat, P.S. and Molloy, B.T., Prediction of Long-Term Chloride Concentration in Concrete. Materials and Structures, 27, 338-346, 1994.
  • Page, C.L. and Page, M.M., Durability of Concrete and Cement Composites. Woodhead Publishing, Cambridge, 2007.
  • Helland, S., Service Life of Concrete Offshore Structures. Structural Concrete, 2, 121–125, 2001.
  • Stewart, M.G. and Rosowsky, D.V., Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks. Structural Safety, 20, 91-109, 1998.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makale
Yazarlar

Özkan Şengül Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2011
Gönderilme Tarihi 18 Haziran 2015
Yayımlandığı Sayı Yıl 2011 Cilt: 22 Sayı: 107

Kaynak Göster

APA Şengül, Ö. (2011). KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM. Teknik Dergi, 22(107), 5409-5423.
AMA Şengül Ö. KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM. Teknik Dergi. Aralık 2011;22(107):5409-5423.
Chicago Şengül, Özkan. “KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM”. Teknik Dergi 22, sy. 107 (Aralık 2011): 5409-23.
EndNote Şengül Ö (01 Aralık 2011) KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM. Teknik Dergi 22 107 5409–5423.
IEEE Ö. Şengül, “KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM”, Teknik Dergi, c. 22, sy. 107, ss. 5409–5423, 2011.
ISNAD Şengül, Özkan. “KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM”. Teknik Dergi 22/107 (Aralık 2011), 5409-5423.
JAMA Şengül Ö. KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM. Teknik Dergi. 2011;22:5409–5423.
MLA Şengül, Özkan. “KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM”. Teknik Dergi, c. 22, sy. 107, 2011, ss. 5409-23.
Vancouver Şengül Ö. KLOR İYONU ETKİSİNDEKİ BETONARME YAPI ELEMANLARININ DAYANIKLILIĞI İÇİN OLASILIĞA DAYALI TASARIM. Teknik Dergi. 2011;22(107):5409-23.