Araştırma Makalesi
BibTex RIS Kaynak Göster

Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri

Yıl 2016, Cilt: 27 Sayı: 4, 7593 - 7617, 01.10.2016

Öz

Sunulan çalışmada, silt kum karışımlarının sıvılaşma
davranışları ve sıvılaşma sonrası hacimsel deformasyon özellikleri araştırılmıştır.
Çalışma, İzmir Bayraklı bölgesinden temel kazısı sırasında elde edilen silt kum
karışımı ile gerçekleştirilmiştir. Yapılan çalışmada silt içeriğinin sıvılaşma
dayanımına etkisinin araştırılması için 8 farklı ince tane içeriğinde (FC=%0,
5, 10, 20, 40, 60, 80,100) dinamik üç eksenli deney aleti ile JGS 0542-2000
standardına uygun olarak drenajsız deneyler gerçekleştirilmiş ve deneyler
sonucunda hacimsel deformasyon özelliklerinin belirlenmesi için drenaj vanaları
açılarak çıkan su miktarları büret yardımıyla ölçülmüştür. Sıvılaşma deneyleri
rölatif sıkılık yerine, artan silt içerikleri ile birlikte kaba daneler ve ince
daneler arası boşluk oranı kavramlarına göre sıvılaşma kriterleri
belirlenmiştir. Ayrıca bu durumda sıvılaşma dayanımında eşik silt içeriği
bulunmuştur. Sıvılaşma sonrası hacimsel deformasyon davranışları ise silt
içeriğine bağlı olarak yorumlanmıştır.

Kaynakça

  • Seed, H. B., and Lee K. L, “Liquefaction of Saturated Sands during cyclic Loading” J. Soil Mech. And found. Div., ASCE 92 (6), p105-134, 1966.
  • Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng, ASCE;111(12) p1425–45, 1985.
  • Koester JP. In: Prakash S, Dakoulas P, editors. The influence of fines type and content on cyclic strength. Ground failures under seismic conditions, 44. ASCE Publication; p. 17–33, 1994.
  • Troncoso, J.H. “Failure Risks of Abandoned Tailings Dams” Proc. Int. Sym. On Safety and Rehabilitation of Tailings Dams, International Commission on Large Dams,Paris, p82-89, 1990.
  • Ishihara. Soil behaviour in earthquake geotechnics. Oxford Engng Sci Ser 1993;46.
  • Guo, T. and Prakash, S., Liquefaction of Silts and Silt-Clay Mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 8, p706-710. 1999.
  • Finn LWD, Ledbetter RH, Guoxi WU. Liquefaction in silty soils: design and analysis. In: Prakash S, Dakoulas P, editors. Ground failures under seismic conditions. ASCE Geotechnical Special Publication, vol. 44, p. 51–76, 1994.
  • Polito, C. P., and Martin II, J. R. Effects of non-plastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering, 127, p408–415, 2001.
  • Thevanayagam, S. Effect of fines and confining stress on undrained shear strength of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124, p479–491. 1998.
  • Thevanayagam, S. and Mohan, S. Intergranular state variables and stress strain behavior of silt sand, Geotechnique 50(1),p1-23, 2000.
  • Vaid YP. Liquefaction of silty soils. In: Prakash S, Dakoulas P, editors. Ground failures under seismic conditions, 44. ASCE Publication;. p. 1–16, 1994.
  • Amini, F., and Qi, G. Z. Liquefaction testing of stratified silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 126, p208–217, 2000.
  • Belkhatir, M., Arab, A., Della, N., Missoum, H., & Schanz, T. Liquefaction resistance of Chlef river silty sand: Effect of low plastic fines and other parameters. Acta Polytechnica Hungarica, 7, p119–137, 2010.
  • Stamatopoulos, C. An experimental study of the liquefaction strength of silty sands in terms of the state parameter. Soil Dynamics and Earthquake Engineering, 30, p662–678 2010.
  • Papadopoulou, A., and Tika, T. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils and Foundations, 48, p713–725, 2008.
  • Xenaki, V. C., and Athanasopoulos, G. A. Liquefaction resistance of sand-silt mixtures: An experimental investigation of the effect of fines. Soil Dynamics and Earthquake Engineering, 23, p183–194, 2003.
  • Polito CP. The effects of non-plastic and plastic fines on the liquefaction of sandy soils. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg. 1999.
  • Altun, S., Göktepe, A.B. and Akgüner, C., “Cyclic Shear Strength of Silts and Sands Under Cyclic Loading”, ASCE Geotechnical Special Publication No:133: Earthquake Engineering and Soil Dynamics: Recent Findings in Soil Liquefaction, 1365-1375, Proceedings of the Geo-Frontiers 2005 Conference held in Austin, Texas, 2005, (CD Press)
  • Yang, S. L., Lacasse, S., and Sandven, R. (Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotechnical Testing Journal, 29, p102–10, 2006.
  • Kuerbis, R. H., Negussey, D., and Vaid, Y. PEffect of gradation and fines content on the undrained response of sand. In D. J. A. Van Zyl (Ed.), Fort Collins, CO: Geotechnical Special Publications Hydraulic fill structures. p. 330–345, 1988.
  • Dash, H. K., and Sitharam, T. G. Undrained monotonic response of sand-silt mixtures:Effect of nonplastic fines. Geomechanics and Geoengineering, 6, p47–58. 2011.
  • Dasari, G. R., Ni, Q., Tan, T. S., and Hight, D. W. Contribution of fines to the compressive strength of mixed soils. Géotechnique, 54, p561–569, 2004.
  • Lee, K., and Albaisa, A., Earthquake Induced Settlement in Saturated Sands. ASCE Journal of Geotechnical Engineering Divisions (100), p.387-406, 1974.
  • Tatsuoka, F., Muramatsu M. and Sasaki T., Cyclic undrained stress-strain behavior of dense sands by torsional simple shear test, Soils and Foundations, 22, p.55-70, 1982.
  • Ishihara, K., Tatsuoka, F., and Yasuda, S., Effects of Overconsolidated Sand and Liquefaction Characteristic of Sands Containings Fines. Dynamic Geotechnical Testing (654), p.246-264, 1978.
  • Tokimatsu, K. and H.B. Seed, Evaluation of settlements in sands due to earthquake shaking, J. Geot. Engrg., 113 (8), p861-878, 1987.
  • Ishihara, K. and Yoshimine, M.. Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and Foundations. Vol. 32(1): p173-188, 1992.
  • Tatsuoka, F., Muramatsu M. and Sasaki T.,. Cyclic undrained stress-strain behavior of dense sands by torsional simple shear test, Soils and Foundations, 22, p.55-70, 1982.
  • Kondoh, M., Sasaki, Y. and Matsumoto, H. Effects of fines contents on soil liquefaction strength, Proceedings Annual Meeting of the Japanese Society of Soil Mechanics and Foundation Engineering, Tsukuba,Japan 1987.
  • Kokusho, T., Yoshida, Y., Nishi, K. and Esashi, Y. Evaluation of Seismic Stability of Sand Layer (Part I) Report 383025, Electric Power Central Research Institute. 1983.
  • JGS 0542-2000 (Method for Cyclic Triaxial Test to Determine Deformation Properties of Geomaterials)
  • JGS 0541-2000 (Method for Cyclic Undrained Triaxial Test on Soils)
  • JGS 0520-2000 (Preparation of Soil Specimens for Triaxial Tests)

Liquefaction Behavior of Silt Sand Mixtures and Post Liquefaction Volumetric Strain Properties

Yıl 2016, Cilt: 27 Sayı: 4, 7593 - 7617, 01.10.2016

Öz

In this study, the
liquefaction behavior silty sand mixtures and volumetric deformation properties
were investigated. The study was implemented on samples of silt sand mixtures
obtained during an excavation at Bayraklı, Izmir, Turkey. In order to
investigate the liquefaction behavior of silty sand, undrained cyclic triaxial
compression tests were carried out according to JGS 0542-2000, for 8 different
fines contents (0, 5, 10, 20, 40, 60, 80, 100%). To determine the volumetric
deformation properties, the water content change was measured by allowing
drainage into a burette upon completion of a cyclic test. The liquefaction
criteria was determined by using intergranular-interfine void ratios. A
threshold fines content to serve as liquefaction criterion has also been
determined. The volumetric deformation properties behavior were reviewed
depending on the silt content.

Kaynakça

  • Seed, H. B., and Lee K. L, “Liquefaction of Saturated Sands during cyclic Loading” J. Soil Mech. And found. Div., ASCE 92 (6), p105-134, 1966.
  • Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng, ASCE;111(12) p1425–45, 1985.
  • Koester JP. In: Prakash S, Dakoulas P, editors. The influence of fines type and content on cyclic strength. Ground failures under seismic conditions, 44. ASCE Publication; p. 17–33, 1994.
  • Troncoso, J.H. “Failure Risks of Abandoned Tailings Dams” Proc. Int. Sym. On Safety and Rehabilitation of Tailings Dams, International Commission on Large Dams,Paris, p82-89, 1990.
  • Ishihara. Soil behaviour in earthquake geotechnics. Oxford Engng Sci Ser 1993;46.
  • Guo, T. and Prakash, S., Liquefaction of Silts and Silt-Clay Mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 8, p706-710. 1999.
  • Finn LWD, Ledbetter RH, Guoxi WU. Liquefaction in silty soils: design and analysis. In: Prakash S, Dakoulas P, editors. Ground failures under seismic conditions. ASCE Geotechnical Special Publication, vol. 44, p. 51–76, 1994.
  • Polito, C. P., and Martin II, J. R. Effects of non-plastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering, 127, p408–415, 2001.
  • Thevanayagam, S. Effect of fines and confining stress on undrained shear strength of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124, p479–491. 1998.
  • Thevanayagam, S. and Mohan, S. Intergranular state variables and stress strain behavior of silt sand, Geotechnique 50(1),p1-23, 2000.
  • Vaid YP. Liquefaction of silty soils. In: Prakash S, Dakoulas P, editors. Ground failures under seismic conditions, 44. ASCE Publication;. p. 1–16, 1994.
  • Amini, F., and Qi, G. Z. Liquefaction testing of stratified silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 126, p208–217, 2000.
  • Belkhatir, M., Arab, A., Della, N., Missoum, H., & Schanz, T. Liquefaction resistance of Chlef river silty sand: Effect of low plastic fines and other parameters. Acta Polytechnica Hungarica, 7, p119–137, 2010.
  • Stamatopoulos, C. An experimental study of the liquefaction strength of silty sands in terms of the state parameter. Soil Dynamics and Earthquake Engineering, 30, p662–678 2010.
  • Papadopoulou, A., and Tika, T. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils and Foundations, 48, p713–725, 2008.
  • Xenaki, V. C., and Athanasopoulos, G. A. Liquefaction resistance of sand-silt mixtures: An experimental investigation of the effect of fines. Soil Dynamics and Earthquake Engineering, 23, p183–194, 2003.
  • Polito CP. The effects of non-plastic and plastic fines on the liquefaction of sandy soils. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg. 1999.
  • Altun, S., Göktepe, A.B. and Akgüner, C., “Cyclic Shear Strength of Silts and Sands Under Cyclic Loading”, ASCE Geotechnical Special Publication No:133: Earthquake Engineering and Soil Dynamics: Recent Findings in Soil Liquefaction, 1365-1375, Proceedings of the Geo-Frontiers 2005 Conference held in Austin, Texas, 2005, (CD Press)
  • Yang, S. L., Lacasse, S., and Sandven, R. (Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotechnical Testing Journal, 29, p102–10, 2006.
  • Kuerbis, R. H., Negussey, D., and Vaid, Y. PEffect of gradation and fines content on the undrained response of sand. In D. J. A. Van Zyl (Ed.), Fort Collins, CO: Geotechnical Special Publications Hydraulic fill structures. p. 330–345, 1988.
  • Dash, H. K., and Sitharam, T. G. Undrained monotonic response of sand-silt mixtures:Effect of nonplastic fines. Geomechanics and Geoengineering, 6, p47–58. 2011.
  • Dasari, G. R., Ni, Q., Tan, T. S., and Hight, D. W. Contribution of fines to the compressive strength of mixed soils. Géotechnique, 54, p561–569, 2004.
  • Lee, K., and Albaisa, A., Earthquake Induced Settlement in Saturated Sands. ASCE Journal of Geotechnical Engineering Divisions (100), p.387-406, 1974.
  • Tatsuoka, F., Muramatsu M. and Sasaki T., Cyclic undrained stress-strain behavior of dense sands by torsional simple shear test, Soils and Foundations, 22, p.55-70, 1982.
  • Ishihara, K., Tatsuoka, F., and Yasuda, S., Effects of Overconsolidated Sand and Liquefaction Characteristic of Sands Containings Fines. Dynamic Geotechnical Testing (654), p.246-264, 1978.
  • Tokimatsu, K. and H.B. Seed, Evaluation of settlements in sands due to earthquake shaking, J. Geot. Engrg., 113 (8), p861-878, 1987.
  • Ishihara, K. and Yoshimine, M.. Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and Foundations. Vol. 32(1): p173-188, 1992.
  • Tatsuoka, F., Muramatsu M. and Sasaki T.,. Cyclic undrained stress-strain behavior of dense sands by torsional simple shear test, Soils and Foundations, 22, p.55-70, 1982.
  • Kondoh, M., Sasaki, Y. and Matsumoto, H. Effects of fines contents on soil liquefaction strength, Proceedings Annual Meeting of the Japanese Society of Soil Mechanics and Foundation Engineering, Tsukuba,Japan 1987.
  • Kokusho, T., Yoshida, Y., Nishi, K. and Esashi, Y. Evaluation of Seismic Stability of Sand Layer (Part I) Report 383025, Electric Power Central Research Institute. 1983.
  • JGS 0542-2000 (Method for Cyclic Triaxial Test to Determine Deformation Properties of Geomaterials)
  • JGS 0541-2000 (Method for Cyclic Undrained Triaxial Test on Soils)
  • JGS 0520-2000 (Preparation of Soil Specimens for Triaxial Tests)
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Bölüm Makale
Yazarlar

Eyyüb Karakan Bu kişi benim

Selim Altun Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2016
Gönderilme Tarihi 21 Mart 2017
Yayımlandığı Sayı Yıl 2016 Cilt: 27 Sayı: 4

Kaynak Göster

APA Karakan, E., & Altun, S. (2016). Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri. Teknik Dergi, 27(4), 7593-7617.
AMA Karakan E, Altun S. Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri. Teknik Dergi. Ekim 2016;27(4):7593-7617.
Chicago Karakan, Eyyüb, ve Selim Altun. “Silt Kum Karışımlarının Sıvılaşma Davranışı Ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri”. Teknik Dergi 27, sy. 4 (Ekim 2016): 7593-7617.
EndNote Karakan E, Altun S (01 Ekim 2016) Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri. Teknik Dergi 27 4 7593–7617.
IEEE E. Karakan ve S. Altun, “Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri”, Teknik Dergi, c. 27, sy. 4, ss. 7593–7617, 2016.
ISNAD Karakan, Eyyüb - Altun, Selim. “Silt Kum Karışımlarının Sıvılaşma Davranışı Ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri”. Teknik Dergi 27/4 (Ekim 2016), 7593-7617.
JAMA Karakan E, Altun S. Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri. Teknik Dergi. 2016;27:7593–7617.
MLA Karakan, Eyyüb ve Selim Altun. “Silt Kum Karışımlarının Sıvılaşma Davranışı Ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri”. Teknik Dergi, c. 27, sy. 4, 2016, ss. 7593-17.
Vancouver Karakan E, Altun S. Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri. Teknik Dergi. 2016;27(4):7593-617.