Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Evaluation of the Damage Limit States of R/C Beams

Yıl 2017, Cilt: 28 Sayı: 4, 8023 - 8049, 01.10.2017
https://doi.org/10.18400/tekderg.331587

Öz

In this study,
three cast in situ RC cantilever beams with different shear length / beam
effective depth ratios are used for investigating their behavior under
displacement controlled cyclic loading simulating earthquakes. Experimentally
observed damage states are compared with the respective values proposed by the
Turkish Seismic Design Code. It is found that, code based material strain
limits remain insufficient to obtain the damage limit state due to buckling of
longitudinal steel bars.  A new equation
for estimating upper strain limits reflecting the contribution of longitudinal
bar buckling in compression is derived. 
The new equation is tested against experimental findings.

Kaynakça

  • [1] Corley, G. W., Rotational Capacity of Reinforced Concrete Beams, Journal of the Structural Division, ASCE, V. 92, 121-146, 1966.
  • [2] Baker, A. L. L., and Amarakone, A. M. N., Inelastic Hyperstatic Frame Analysis, Flexural Mechanics of Reinforced Concrete, ACI, SP-12, 85-142, 1967.
  • [3] Mattock, A. H., Rotational Capacity of Hinging Regions in Reinforced Concrete Beams, Flexural Mechanics of Reinforced Concrete, ACI, SP-12, 143-181, 1967.
  • [4] Eligehausen, R., and Langer, P., Rotation Capacity of Plastic Hinges and Allowable Moment Redistribution, CEB Bulletin, No. 175, I7.9-I7.27, 1987.
  • [5] Hillerborg, A., Fracture Mechanics Concepts Applied to Moment Capacity and Rotational Capacity of Reinforced Concrete Beams, Engineering Fracture Mechanics, V. 35, 233-240, 1990.
  • [6] Bigaj, A. J., Structural Dependence of Rotation Capacity of Plastic Hinges in RC Beams and Slabs, PhD thesis, Delft University, the Netherlands, 1999.
  • [7] Bigaj, A. J., and Walraven, J., Size Effects on Plastic Hinges of Reinforced Concrete Members, Heron, V. 47, 53-75, 2002.
  • [8] SEAOC., Vision 2000: Performance Based Seismic Engineering of Buildings. Structural Engineers Association of California, Sacramento CA., 1995.
  • [9] Applied Technology Council, Seismic evaluation and retrofit of concrete buildings ATC-40, California, 1996.
  • [10] Federal Emergency Management Agency, Prestandard and commentary for the seismic rehabilitation of buildings, Washington (DC): FEMA-356, 2000.
  • [11] ASCE/SEI 41, Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers, Reston, VA, 2007.
  • [12] EN 1998-3, Eurocode 8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings, Brussels, 2003.
  • [13] SANZ Concrete Structures Standard, NZS 3101:2006. Standards Association, Wellington, NZ, 2006.
  • [14] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskân Bakanlığı, Ankara, Mart 2007.
  • [15] Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley and Sons, New York, 1975.
  • [16] EN 1992-1-1, Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, 2003.
  • [17] Priestley MJN., Performance-based seismic design, Proceedings of the 12th WCEE, Auckland, 2000, Paper No. 2831.
  • [18] Walker A.F. and Dhakal R.P., Assessment of material strain limits for defining plastic regions in concrete structures, Bulletin of The New Zealand Society for Earthquake Engineering, Vol. 42, No. 2, 2009.
  • [19] Fardis M.N. and Biskinis D.E., Deformation of RC Members, as Controlled by Flexure or Shear, Proceedings of the International Symposium Honoring Shunsuke Otani, September, 511-530, 2003.
  • [20] Aydemir, C., Kırçıl M.S., Hancıoğlu B., Zorbozan M., Betonarme Kolonların Hasar Sınır Eğriliklerinin Belirlenmesi, İMO Teknik Dergi, 2011, Cilt 22, Sayı 4, Sayfa 5613-5641
  • [21] Acun, B., Sucuoğlu H., Betonarme Kolonların Şekildeğiştirme Performans Sınırlarının Deneysel Gözlemlerle Değerlendirilmesi, İMO Teknik Dergi, 2011, Cilt 22, Sayı 3, Sayfa 5523-5541
  • [22] Lehman D., Moehle j., and Mahin S., Experimental Evaluation of the Seismic Performance of Reinforced Concrete Bridge Columns, ASCE, J. Struct. Eng., 130(6): 869–870, 2004.
  • [23] Mander, J. B., Priestley, M. J. N., and Park, R., ‘Seismic design of bridge piers., Research Rep. 84-2, Univ. of Canterbury, Civil Engineering, Christchurch, New Zealand, 1984.
  • [24] Monti G., and Nuti C., Nonlinear cyclic behavior of reinforcing bars including buckling, ASCE, J. Struct. Eng., 118(12): 3268–3284, 1992.
  • [25] Rodriguez M., Botero J., and Villa J., Cyclic stress-strain behavior of reinforcing steel including effect of buckling, ASCE, J. Struct. Eng., 125 (6): 605–61284, 1999.
  • [26] Mieses, A.M., Inelastic Buckling Behavior of Concrete Reinforcing Bars under Monotonic Uniaxial Compressive Loading, M.S. thesis, The University of Texas at Austin, 2002
  • [27] Mau, S.T. and El-Mabsout, M., Inelastic Buckling of Reinforcing Bars, ASCE, J. Eng. Mech., 115(1): 1-17, 1989.
  • [28] Bae, S., Seismic Performance of Full-Scale Reinforced Concrete Columns, the University of Texas at Austin, Ph.D. thesis, 2005. [29] StatSoft Inc. STATISTICA V.6.0 for Windows. Tulsa, OK, USA, 1995.
  • [30] Dhakal, R.P. and Maekawa, K., Reinforcement Stability and Fracture of Cover Concrete in Reinforced Concrete Members, Journal of Structural Engineering, ASCE, 128(10):1253-1262, 2002.

Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi

Yıl 2017, Cilt: 28 Sayı: 4, 8023 - 8049, 01.10.2017
https://doi.org/10.18400/tekderg.331587

Öz

Bu
çalışmada üç ayrı kesme açıklığı/kiriş derinliği oranına sahip betonarme konsol
kiriş imal edilerek, numunelerin deprem yükleri altındaki davranışları yerdeğiştirme
kontrollü çevrimsel yüklere benzeştirilerek test edilmiştir. Deneysel
incelemelerdeki hasar gözlemleri,  plastik mafsal bölgeleri ve şekil değiştirme
talepleri; Türk Deprem Yönetmeliği Hasar Sınırı Yaklaşımı kabulleriyle karşılaştırılmalı
olarak irdelenmiştir. Bu incelemelerde, yönetmelik hasar sınırı yaklaşımının
-özellikle yanal donatı aralığının artmasıyla- boyuna donatıdaki burkulma
etkisini betimlemekte yetersiz kaldığı tespit edilmiştir. Basınç donatısındaki
burkulmanın da etkisini yansıtacak bir hasar sınırı tespitine yönelik yapılan analizle,
basınç donatısı burkulma birim şekil değiştirme sınırı etkin davranış
parametrelerine göre ifade edilmiş ve geliştirilen bağıntı deneysel sonuçlar
ile karşılaştırılmıştır.

Kaynakça

  • [1] Corley, G. W., Rotational Capacity of Reinforced Concrete Beams, Journal of the Structural Division, ASCE, V. 92, 121-146, 1966.
  • [2] Baker, A. L. L., and Amarakone, A. M. N., Inelastic Hyperstatic Frame Analysis, Flexural Mechanics of Reinforced Concrete, ACI, SP-12, 85-142, 1967.
  • [3] Mattock, A. H., Rotational Capacity of Hinging Regions in Reinforced Concrete Beams, Flexural Mechanics of Reinforced Concrete, ACI, SP-12, 143-181, 1967.
  • [4] Eligehausen, R., and Langer, P., Rotation Capacity of Plastic Hinges and Allowable Moment Redistribution, CEB Bulletin, No. 175, I7.9-I7.27, 1987.
  • [5] Hillerborg, A., Fracture Mechanics Concepts Applied to Moment Capacity and Rotational Capacity of Reinforced Concrete Beams, Engineering Fracture Mechanics, V. 35, 233-240, 1990.
  • [6] Bigaj, A. J., Structural Dependence of Rotation Capacity of Plastic Hinges in RC Beams and Slabs, PhD thesis, Delft University, the Netherlands, 1999.
  • [7] Bigaj, A. J., and Walraven, J., Size Effects on Plastic Hinges of Reinforced Concrete Members, Heron, V. 47, 53-75, 2002.
  • [8] SEAOC., Vision 2000: Performance Based Seismic Engineering of Buildings. Structural Engineers Association of California, Sacramento CA., 1995.
  • [9] Applied Technology Council, Seismic evaluation and retrofit of concrete buildings ATC-40, California, 1996.
  • [10] Federal Emergency Management Agency, Prestandard and commentary for the seismic rehabilitation of buildings, Washington (DC): FEMA-356, 2000.
  • [11] ASCE/SEI 41, Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers, Reston, VA, 2007.
  • [12] EN 1998-3, Eurocode 8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings, Brussels, 2003.
  • [13] SANZ Concrete Structures Standard, NZS 3101:2006. Standards Association, Wellington, NZ, 2006.
  • [14] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskân Bakanlığı, Ankara, Mart 2007.
  • [15] Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley and Sons, New York, 1975.
  • [16] EN 1992-1-1, Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, 2003.
  • [17] Priestley MJN., Performance-based seismic design, Proceedings of the 12th WCEE, Auckland, 2000, Paper No. 2831.
  • [18] Walker A.F. and Dhakal R.P., Assessment of material strain limits for defining plastic regions in concrete structures, Bulletin of The New Zealand Society for Earthquake Engineering, Vol. 42, No. 2, 2009.
  • [19] Fardis M.N. and Biskinis D.E., Deformation of RC Members, as Controlled by Flexure or Shear, Proceedings of the International Symposium Honoring Shunsuke Otani, September, 511-530, 2003.
  • [20] Aydemir, C., Kırçıl M.S., Hancıoğlu B., Zorbozan M., Betonarme Kolonların Hasar Sınır Eğriliklerinin Belirlenmesi, İMO Teknik Dergi, 2011, Cilt 22, Sayı 4, Sayfa 5613-5641
  • [21] Acun, B., Sucuoğlu H., Betonarme Kolonların Şekildeğiştirme Performans Sınırlarının Deneysel Gözlemlerle Değerlendirilmesi, İMO Teknik Dergi, 2011, Cilt 22, Sayı 3, Sayfa 5523-5541
  • [22] Lehman D., Moehle j., and Mahin S., Experimental Evaluation of the Seismic Performance of Reinforced Concrete Bridge Columns, ASCE, J. Struct. Eng., 130(6): 869–870, 2004.
  • [23] Mander, J. B., Priestley, M. J. N., and Park, R., ‘Seismic design of bridge piers., Research Rep. 84-2, Univ. of Canterbury, Civil Engineering, Christchurch, New Zealand, 1984.
  • [24] Monti G., and Nuti C., Nonlinear cyclic behavior of reinforcing bars including buckling, ASCE, J. Struct. Eng., 118(12): 3268–3284, 1992.
  • [25] Rodriguez M., Botero J., and Villa J., Cyclic stress-strain behavior of reinforcing steel including effect of buckling, ASCE, J. Struct. Eng., 125 (6): 605–61284, 1999.
  • [26] Mieses, A.M., Inelastic Buckling Behavior of Concrete Reinforcing Bars under Monotonic Uniaxial Compressive Loading, M.S. thesis, The University of Texas at Austin, 2002
  • [27] Mau, S.T. and El-Mabsout, M., Inelastic Buckling of Reinforcing Bars, ASCE, J. Eng. Mech., 115(1): 1-17, 1989.
  • [28] Bae, S., Seismic Performance of Full-Scale Reinforced Concrete Columns, the University of Texas at Austin, Ph.D. thesis, 2005. [29] StatSoft Inc. STATISTICA V.6.0 for Windows. Tulsa, OK, USA, 1995.
  • [30] Dhakal, R.P. and Maekawa, K., Reinforcement Stability and Fracture of Cover Concrete in Reinforced Concrete Members, Journal of Structural Engineering, ASCE, 128(10):1253-1262, 2002.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makale
Yazarlar

Cem Aydemir

Müberra Eser Aydemir

Yayımlanma Tarihi 1 Ekim 2017
Gönderilme Tarihi 28 Temmuz 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 28 Sayı: 4

Kaynak Göster

APA Aydemir, C., & Eser Aydemir, M. (2017). Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi. Teknik Dergi, 28(4), 8023-8049. https://doi.org/10.18400/tekderg.331587
AMA Aydemir C, Eser Aydemir M. Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi. Teknik Dergi. Ekim 2017;28(4):8023-8049. doi:10.18400/tekderg.331587
Chicago Aydemir, Cem, ve Müberra Eser Aydemir. “Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi”. Teknik Dergi 28, sy. 4 (Ekim 2017): 8023-49. https://doi.org/10.18400/tekderg.331587.
EndNote Aydemir C, Eser Aydemir M (01 Ekim 2017) Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi. Teknik Dergi 28 4 8023–8049.
IEEE C. Aydemir ve M. Eser Aydemir, “Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi”, Teknik Dergi, c. 28, sy. 4, ss. 8023–8049, 2017, doi: 10.18400/tekderg.331587.
ISNAD Aydemir, Cem - Eser Aydemir, Müberra. “Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi”. Teknik Dergi 28/4 (Ekim 2017), 8023-8049. https://doi.org/10.18400/tekderg.331587.
JAMA Aydemir C, Eser Aydemir M. Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi. Teknik Dergi. 2017;28:8023–8049.
MLA Aydemir, Cem ve Müberra Eser Aydemir. “Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi”. Teknik Dergi, c. 28, sy. 4, 2017, ss. 8023-49, doi:10.18400/tekderg.331587.
Vancouver Aydemir C, Eser Aydemir M. Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi. Teknik Dergi. 2017;28(4):8023-49.