Yıl 2019, Cilt 30 , Sayı 6, Sayfalar 9621 - 9645 2019-11-01

Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface
Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface

M. Sami AKOZ [1] , Oğuz ŞİMŞEK [2] , N. Göksu SOYDAN [3]


Turbulent flow characteristics around a partially buried horizontal circular cylinder are investigated numerically for the burial ratio of B/D=0.50. The governing equations are numerically solved using ANSYS-Fluent for the flows having the same conditions with the experiments related to measurements of velocity field by Particle Image Velocimetry for Reynolds numbers based on the cylinder diameter, in the ranges of 1000 ≤ ReD ≤ 7000. Standard k-ε, Renormalization-group k-ε, Realizable k-ε, Modified k-ω, Shear Stress Transport k-w and Reynolds Stress turbulence models are employed. Experimental validations of the numerical results show that Shear Stress Transport k-w model provides better predictions for the kinematic properties of the turbulent flow than the other turbulence models used herein. Force coefficients also predicted numerically at Reynolds numbers in the ranges of 1000 £ReD £7000 for the burial ratio, B/D=0, 0.25 and 0.5. 

Turbulent flow characteristics around a partially buried horizontal circular cylinder are investigated numerically for the burial ratio of B/D=0.50. The governing equations are numerically solved using ANSYS-Fluent for the flows having the same conditions with the experiments related to measurements of velocity field by Particle Image Velocimetry for Reynolds numbers based on the cylinder diameter, in the ranges of 1000 ≤ ReD ≤ 7000. Standard k-ε, Renormalization-group k-ε, Realizable k-ε, Modified k-ω, Shear Stress Transport k-w and Reynolds Stress turbulence models are employed. Experimental validations of the numerical results show that Shear Stress Transport k-w model provides better predictions for the kinematic properties of the turbulent flow than the other turbulence models used herein. Force coefficients also predicted numerically at Reynolds numbers in the ranges of 1000 £ReD £7000 for the burial ratio, B/D=0, 0.25 and 0.5. 

  • [1] Sumer, B., and Fredsoe, J., Self-Burial of Pipelines at Span Shoulders, International Journal of Offshore and Polar Engineering, 4, 1, 1994.
  • [2] Bearman, P., and Zdravkovich, M., Flow Around a Circular Cylinder Near a Plane Boundary, Journal of Fluid Mechanics, 89, 1, 33-47, 1978.
  • [3] Zdravkovich, M., Aerodynamics of Two Parallel Circular Cylinders of Finite Height at Simulated High Reynolds Numbers, Journal of Wind Engineering and Industrial Aerodynamics, 6, 1-2, 59-71, 1980.
  • [4] Fredsøe, J., and Hansen, E. A., Lift Forces on Pipelines in Steady Flow, Journal of Waterway, Port, Coastal, and Ocean Engineering, 113, 2, 139-155,1987.
  • [5] Lei, C., Cheng, L., and Kavanagh, K., Re-Examination of the Effect of a Plane Boundary on Force and Vortex Shedding of a Circular Cylinder, Journal of Wind Engineering and Industrial Aerodynamics, 80, 3, 263-286, 1999.
  • [6] Price, S., Sumner, D., Smith, J., Leong, K., and Paidoussis, M., Flow Visualization around a Circular Cylinder Near to a Plane Wall, Journal of Fluids And Structures, 16, 2, 175-191, 2002.
  • [7] Oner, A. A., Kirkgoz, M. S., and Akoz, M. S., Interaction of a Current with a Circular Cylinder near a Rigid Bed, Ocean Engineering, 35, 14, 1492-1504, 2008.
  • [8] Akoz, M. S., Flow Structures Downstream of the Horizontal Cylinder Laid on a Plane Surface, Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223, 2, 397-413,2009.
  • [9] Aköz, M. S., Investigation of Vortical Flow Characteristics around a Partially Buried Circular Cylinder, Ocean Engineering, 52, 35-51, 2012.
  • [10] Olsen, N. R., and Kjellesvig, H. M., Three-Dimensional Numerical Flow Modeling for Estimation of Maximum Local Scour Depth, Journal of Hydraulic Research, 36, 4, 579-590, 1998.
  • [11] Liang, D., Cheng, L., and Li, F., Numerical Modeling of Flow and Scour Below a Pipeline in Currents: Part II. Scour Simulation, Coastal Engineering, 52, 1, 43-62, 2005.
  • [12] Zhao, Z. H., and Fernando, H. J. S., Numerical Simulation of Scour around Pipelines Using an Euler-Euler Coupled Two-Phase Model, Environmental Fluid Mechanics, 7, 2, 121-142, 2007.
  • [13] Mao, Y., The interaction between a pipeline and an erodible bed, Series Paper Technical University of Denmark, 39, 1987.
  • [14] Kirkgoz, M. S., Oner, A. A., and Akoz, M. S., Numerical Modeling of Interaction of a Current with a Circular Cylinder Near a Rigid Bed, Advances in Engineering Software, 40, 11, 1191-1199, 2009.
  • [15] Akoz, M. S., and Kirkgoz, M. S., Numerical and Experimental Analyses of the Flow around a Horizontal Wall-Mounted Circular Cylinder, Transactions of the Canadian Society for Mechanical Engineering, 33, 2, 189-215, 2009.
  • [16] Dixen, M., Sumer, B. M., and Fredsoe, J., Numerical and Experimental Investigation of Flow and Scour around a Half-Buried Sphere, Coastal Engineering, 73, 84-105, 2013.
  • [17] Zhu, H., Qi, X., Lin, P., and Yang, Y., Numerical Simulation of Flow around a Submarine Pipe with a Spoiler and Current-Induced Scour Beneath the Pipe, Applied Ocean Research, 41, 87-100, 2013.
  • [18] Launder, B. E., and Spalding, D. B., Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972.
  • [19] Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G., Development of Turbulence Models for Shear Flows by a Double Expansion Technique. Physics of Fluids a-Fluid Dynamics, 4, 7, 1510-1520, 1992.
  • [20] Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. G., and Zhu, J., A New Kappa-Epsilon Eddy Viscosity Model for High Reynolds-Number Turbulent Flows. Computers & Fluids, 24, 3, 227-238, 1995.
  • [21] Wilcox, D. C., Turbulence Modeling for CFD, DCW Industries, Inc., California, 1998.
  • [22] Menter, F. R., 2-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32, 8, 1598-1605, 1994.
  • [23] Launder, B. E., Reece, G. J., and Rodi, W., Progress in the Development of a Reynolds-Stress Turbulence Closure, Journal of Fluid Mechanics, 68, 3, 537-566, 1975.
  • [24] Wolfshtein, M., The Velocity and Temperature Distribution in One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient, International Journal of Heat and Mass Transfer, 12, 3, 301-318, 1969.
  • [25] Kirkgoz, M. S., and Ardiclioglu, M,. Velocity Profiles of Developing and Developed Open Channel Flow, Journal Hydraulic Engineering-ASCE, 123, 12, 1099-1105, 1997.
  • [26] Roache, P. J., Verification of Codes and Calculations, AIAA Journal, 36, 5, 696-702, 1998.
  • [27] Cokgor, S., and Avci, I., Hydrodynamic Forces on Partly Buried Tandem, Twin Pipelines in Current, Ocean Engineering, 28, 10, 1349-1360, 2001.
  • [28] Zdravkovich, M., Flow Induced Oscillations of Two Interfering Circular Cylinders, Journal of Sound and Vibration, 101, 4, 511-521, 1985.
  • [29] Kalghatgi, S., and Sayer, P., Hydrodynamic Forces on Piggyback Pipeline Configurations, Journal of waterway, port, coastal, and ocean engineering, 123, 1, 16-22, 1997.
Birincil Dil en
Konular İnşaat Mühendisliği
Bölüm Makale
Yazarlar

Orcid: 0000-0003-0282-0574
Yazar: M. Sami AKOZ
Kurum: ÇUKUROVA ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ
Ülke: Turkey


Orcid: 0000-0001-6324-0229
Yazar: Oğuz ŞİMŞEK (Sorumlu Yazar)
Kurum: ÇUKUROVA ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ
Ülke: Turkey


Orcid: 0000-0001-6469-2649
Yazar: N. Göksu SOYDAN
Kurum: MERSİN ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 1 Kasım 2019

Bibtex @araştırma makalesi { tekderg432310, journal = {Teknik Dergi}, issn = {1300-3453}, address = {}, publisher = {TMMOB İnşaat Mühendisleri Odası}, year = {2019}, volume = {30}, pages = {9621 - 9645}, doi = {10.18400/tekderg.432310}, title = {Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface}, key = {cite}, author = {AKOZ, M. Sami and ŞİMŞEK, Oğuz and SOYDAN, N. Göksu} }
APA AKOZ, M , ŞİMŞEK, O , SOYDAN, N . (2019). Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface. Teknik Dergi , 30 (6) , 9621-9645 . DOI: 10.18400/tekderg.432310
MLA AKOZ, M , ŞİMŞEK, O , SOYDAN, N . "Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface". Teknik Dergi 30 (2019 ): 9621-9645 <https://dergipark.org.tr/tr/pub/tekderg/issue/42389/432310>
Chicago AKOZ, M , ŞİMŞEK, O , SOYDAN, N . "Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface". Teknik Dergi 30 (2019 ): 9621-9645
RIS TY - JOUR T1 - Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface AU - M. Sami AKOZ , Oğuz ŞİMŞEK , N. Göksu SOYDAN Y1 - 2019 PY - 2019 N1 - doi: 10.18400/tekderg.432310 DO - 10.18400/tekderg.432310 T2 - Teknik Dergi JF - Journal JO - JOR SP - 9621 EP - 9645 VL - 30 IS - 6 SN - 1300-3453- M3 - doi: 10.18400/tekderg.432310 UR - https://doi.org/10.18400/tekderg.432310 Y2 - 2019 ER -
EndNote %0 Teknik Dergi Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface %A M. Sami AKOZ , Oğuz ŞİMŞEK , N. Göksu SOYDAN %T Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface %D 2019 %J Teknik Dergi %P 1300-3453- %V 30 %N 6 %R doi: 10.18400/tekderg.432310 %U 10.18400/tekderg.432310
ISNAD AKOZ, M. Sami , ŞİMŞEK, Oğuz , SOYDAN, N. Göksu . "Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface". Teknik Dergi 30 / 6 (Kasım 2019): 9621-9645 . https://doi.org/10.18400/tekderg.432310
AMA AKOZ M , ŞİMŞEK O , SOYDAN N . Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface. Teknik Dergi. 2019; 30(6): 9621-9645.
Vancouver AKOZ M , ŞİMŞEK O , SOYDAN N . Numerical Modeling of Interaction of Turbulent Flow with a Buried Circular Cylinder on a Plane Surface. Teknik Dergi. 2019; 30(6): 9645-9621.


Değişken Enkesitli Açık Kanal Akımının Deneysel ve Sayısal Modellemesi
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
Veysel GÜMÜŞ
https://doi.org/10.29109/gujsc.592989