Araştırma Makalesi
BibTex RIS Kaynak Göster

DBYBHY-2007 ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması

Yıl 2021, Cilt: 32 Sayı: 1, 10441 - 10476, 01.01.2021
https://doi.org/10.18400/tekderg.620816

Öz

Bu çalışmada, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik 2007 (DBYBHY-2007) ve Türkiye Bina Deprem Yönetmeliği 2018 (TBDY-2018) esaslarına göre tasarlanmış 3, 6 ve 9 katlı toplam altı adet ters-V ve parçalı-X tipi merkezi çaprazlı çelik çerçevelerin (MÇÇÇ’lerin) dinamik performansları karşılaştırılmıştır. DBYBHY-2007 ve TBDY-2018’de tanımlanan 50 yılda aşılma olasılığı %2 olan en büyük deprem yer hareketine göre ölçeklendirilen uzak alan kayıtlı 44 adet deprem yer hareketi altında Opensees yazılımı kullanılarak toplam 1056 adet zaman tanım alanında doğrusal olmayan analizler gerçekleştirilmiştir. Elde edilen sonuçlar, hem ters-V hem de parçalı-X tipi MÇÇÇ’lerde TBDY-2018 esaslarına göre boyutlandırılan yapıların daha güvenilir olduğunu göstermiştir.

Kaynakça

  • [1] American Institute of Steel Construction (AISC). Seismic provisions for structural steel buildings, ANSI/AISC 341–16, Chicago, 2016.
  • [2] Eurocode 8, Design of structures for earthquake resistance - part 1: general rules, seismic actions and rules for buildings, EN 1998-1:2004, European Standard, Comit Européen de Normalisation, Brussels, 2004.
  • [3] National Research Council of Canada, NBCC-2015: national building code of Canada, Ottawa, 2015.
  • [4] Bayındır ve İskan Bakanlığı. Deprem bölgelerinde yapılacak binalar hakkında yönetmelik, DBYBHY-2007, Ankara, 2007.
  • [5] İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı. Türkiye bina deprem yönetmeliği, TBDY-2018, Ankara, 2018.
  • [6] Popov, E.P., Takanashi, K., Roeder, C.W., Structural steel bracing systems: behavior under cyclic loading, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1976 (Report No. UCB/EERC-76/17).
  • [7] Zavas, V.A., Popov, E.P., Mahin, S.A., Cyclic inelastic buckling of tubular steel braces, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1980 (Report No. UCB/EERC-80/16).
  • [8] Wakabayashi, M., et al., Experiments on the elastic-plastic behavior of bars subjected to cyclic axial loads, AIJ, Proceedings of Annual Meeting, Japan, October, 1972.
  • [9] Suzuki, T., et al., Experimental study on the elasto-plastic behavior of tensile braced frames, Transactions of the Architectural Institute of Japan, 228: 57-64, 1975.
  • [10] Inoue, K. and M. Murakami, A study on the plastic design of braced multi-story steel frames (Part 3: experimental study on the elastic plastic behavior of 3 story 3 bay braced and un-braced steel frames), Transactions of the Architectural Institute of Japan, 1978.
  • [11] Wakabayashi, M., T. Nakamura and N. Yoshida, Experimental studies on the elastic-plastic behavior of braced frames under repeated horizontal loading – Part 3: experiments of one story-one bay braced frames, Bulletin of the Disaster Prevention Research Institute, 29(4): 143-168, 1980.
  • [12] Workman, G.H., The inelastic behavior of multi-story braced frame structures subjected to earthquake excitation, U. of Michigan Research Report, September, 1969.
  • [13] Kahn, L.F., and Hanson, R.D., Inelastic cycles of axially loaded steel members, Journal of Structural Division, ASCE, No. ST5, Vol. 102, pgs 947-59, 1976.
  • [14] A.K. Jain, R.D. Hanson, S.C. Goel, Hysteretic cycles of axially loaded steel members, J. Struct. Div. 106 (8) 1777–1795, 1980
  • [15] Black R., Wenger W., Popov E., Inelastic buckling of steel struts under cyclic load reversals, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1980 (Report No. UCB/EERC-80/40).
  • [16] Popov, E.P., Black, R.G., Steel structs under severe cyclic loadings, J. Struct. Div. 107 (9) 1857-1881, 1981.
  • [17] Astaneh-Asl A., Goel S., Cyclic in-plane buckling of double-angle bracing, ASCE, J. Struct. Eng., 111 (5) 1135-1153, 1984.
  • [18] Astaneh-Asl A., Goel S., Hanson, R., Cyclic out-of-plane buckling of double-angle bracing, ASCE, J. Struct. Eng., 111 (5) 1135–1153, 1985.
  • [19] Liu Z., Goel S., Cyclic load behavior of concrete-filled tubular braces, ASCE, J. Struct. Eng., 114(7): 1488–1506, 1988.
  • [20] Foutch D., Goel S., Roeder C.W., Seismic testing of full-scale steel building—Part I, ASCE, J. Struct. Eng., 10.1061/(ASCE)0733-9445 (1987)113:11(2111), 2111–2129, 1987.
  • [21] Remennikov, A.M., Walpole, W.R., A note on compression strength reduction factor for a buckled strut in seismic-resisting braced system, Eng. Struct. 20, 8, 779–782, 1998.
  • [22] Tremblay, R., Inelastic seismic response of steel bracingmembers, J. Constr. Steel Res. 58, 5–8, 665–701, 2002.
  • [23] Shaback, B., Brown, T., Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading, Can. J. Civ. Eng. 30, 4, 745–753, 2003.
  • [24] Tremblay, R., Archambault, M.H., Filiatrault, A., Seismic response of concentrically braced steel frames made with rectangular hollow bracing members, J. Struct. Eng. ASCE 129, 12, 1626–1636, 2003.
  • [25] Lee, K., Bruneau, M., Energy dissipation of compression members in concentrically braced frames: Review of Experimental Data, J. Struct. Eng. ASCE 131, 4, 552–559, 2005.
  • [26] Han, S.W., Kim, W.T., Foutch, D.A., Seismic behavior of HSS bracing members according to width–thickness ratio under symmetric cyclic loading, J. Struct. Eng. ASCE 133, 2, 264–273, 2007.
  • [27] Broderick, B.M., Elghazouli, A.Y., Goggins, J., Earthquake testing and response analysis of concentrically-braced sub-frames, J. Constr. Steel Res. 64, 9, 997–1007, 2008.
  • [28] Lumpkin, E.J., Hsiao, P.C., Roeder, C.W., Lehman, D.E., Tsai, C.Y., Wu, A.C., Wei, C.Y., Tsai, K.C., Investigation of the seismic response of three-story special concentrically braced frames, J. Constr. Steel Res. 77, 131–144, 2012.
  • [29] Okazaki, T., Lignos, D.G., Hikino, T., Kajiwara, K., Dynamic response of a chevron concentrically braced frame, J. Struct. Eng. ASCE 139, 4, 515–525, 2013.
  • [30] Sen, A.D., Roeder, C.W., Berman, J.W., Lehman, D.E., Li, C.H., Wu, A.C., Tsai K.C., Experimental Investigation of Chevron Concentrically Braced Frames with Yielding Beams, J. Struct. Eng. ASCE 142, 12, 2016.
  • [31] Kanyilmaz, A., Role of compression diagonals in concentrically braced frames in moderate seismicity: A full scale experimental study, J. Constr. Steel Res. 133, 1–18, 2017
  • [32] Kanyilmaz, A., Castiglioni, C.A., Degée, H., Seismic behaviour of concentrically braced frames in the moderate seismicity context, Eurosteel 2017, September 13-15, Copenhagen, Denmark, 2017.
  • [33] Naderpour, M.N., Aghakouchak, A.A., Izadi, A., Cyclic behavior of concentrically braced frames with built-up braces composed of channel sections, Int. J. Steel Struct., 17-4: 1391-1403, 2017.
  • [34] Ashwin Kumar, P.C., Sahoo, D.R., Fracture ductility of hollow circular and square steel braces under cyclic loading, Thin-Walled Structures, 130, 347-361, 2018.
  • [35] Sabelli, R., Research on improving the design and analysis of earthquake resistant steel braced frames, Federal Emergency Management Agency and Earthquake Engineering Research Institute, 2001 (Report No. FEMA-EERI PF2000-9).
  • [36] Kim, J., Choi, H., Response modification factors of chevron-braced frames, Eng. Struct. 27, 2, 285–300, 2005.
  • [37] Uriz, P., Mahin, S., Towards earthquake resistant design of concentrically braced steel structures, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2008 (Report No. PEER-2008/08).
  • [38] Khandelwal, K., El-Tawil, S., Sadek, F., Progressive collapse analysis of seismically designed steel braced frames, J. Constr. Steel Res. 65, 3, 699–708, 2009
  • [39] Huang, Y., Mahin, S., Simulating the inelastic seismic behavior of steel braced frames including the effects of low cycle fatigue, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2010 (Report No. PEER-2010/104).
  • [40] Hsiao, P.C., Lehman, D.E., Roeder, C.W., Evaluation of the response modification coefficient and collapse potential of special concentrically braced frames, Earthq. Eng. Struct. Dyn. 42, 10, 1547–1564, 2013.
  • [41] Shen, J., Wen, R., Akbas, B., Doran, B., Uckan, E., Seismic demand on brace-intersected beams in two-story X-braced frames, Eng. Struct. 76, 295–312, 2014.
  • [42] J. Shen, R.Wen, B. Akbas, Mechanisms in two-story X-braced frames, J. Constr. Steel Res. 106, 258–277, 2015.
  • [43] Kazemzadeh Azad, S., Topkaya, C., Astaneh-Asl, A., Seismic behavior of concentrically braced frames designed to AISC341 and EC8 provisions, J. Constr. Steel Res, 133, 383-404, 2017.
  • [44] Kazemzadeh Azad, S., Topkaya, C., Bybordiani, M., Dynamic buckling of braces in concentrically braced frames, Earthq. Eng. Struct. Dyn., 47, 613-633, 2018.
  • [45] Faytarounia, F., Seker, O., Akbas, B., Shena, J., Seismic assessment of ductile concentrically braced frames with HSS bracings, Eng. Struct., 191, 401-416, 2019.
  • [46] Sen, A.D., Roeder, C.W., Lehman, D.E., Berman, J.W., Nonlinear modeling of concentrically braced frames, J. Constr. Steel Res, 157, 103-120, 2019.
  • [47] OPENSEES, Version 2.0 User Command-Language Manual, 2009.
  • [48] FEMA, Quantification of building seismic performance factors, FEMA-P695, Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, DC, 2009.
  • [49] ASCE, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI-7-16, Structural Engineering Institute of the American Society of Civil Engineers, Reston, VA, 2016.
  • [50] Çevre ve Şehircilik Bakanlığı, ÇYTHYDE-2018: Çelik yapıların tasarım, hesap ve yapım esasları, Ankara, 2018.
  • [51] Fell, V.B., Kanvinde A.M., Deierlein G.G., Myers, A. T., Experimental investigation of inelastic cyclic buckling and fractıre of steel braces, J. Struct. Eng. 135, USA, 2009.
  • [52] McCormick, J., Aburano, H., Ikenaga, M. and Nakashima, M., Permissible Residual Deformation Levels For Building Structures Considering Both Safety And Human Elements, The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.

Comparison on Dynamic Performance of CBFs Designed as per TEC2007 and TEC2018

Yıl 2021, Cilt: 32 Sayı: 1, 10441 - 10476, 01.01.2021
https://doi.org/10.18400/tekderg.620816

Öz

In this study, dynamic performance of six chevron and split-X braced concentrically braced frames (CBFs) having 3, 6 and 9 number of stories designed as per Turkish Seismic Code 2007 (TSC-2007) and Turkish Seismic Code for Buildings 2018 (TSCB-2018) were compared. By using Opensees software, a total of 1056 nonlinear time history analyses was conducted under 44 far-field ground motions scaled based on TSC-2007 and TSCB-2018 by considering maximum considered earthquake having a 2% probability of being exceeded in 50 years. The results indicate that the archetypes designed as per TSCB-2018 are more reliable in CBFs employing both chevron and split-X brace configuration.

Kaynakça

  • [1] American Institute of Steel Construction (AISC). Seismic provisions for structural steel buildings, ANSI/AISC 341–16, Chicago, 2016.
  • [2] Eurocode 8, Design of structures for earthquake resistance - part 1: general rules, seismic actions and rules for buildings, EN 1998-1:2004, European Standard, Comit Européen de Normalisation, Brussels, 2004.
  • [3] National Research Council of Canada, NBCC-2015: national building code of Canada, Ottawa, 2015.
  • [4] Bayındır ve İskan Bakanlığı. Deprem bölgelerinde yapılacak binalar hakkında yönetmelik, DBYBHY-2007, Ankara, 2007.
  • [5] İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı. Türkiye bina deprem yönetmeliği, TBDY-2018, Ankara, 2018.
  • [6] Popov, E.P., Takanashi, K., Roeder, C.W., Structural steel bracing systems: behavior under cyclic loading, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1976 (Report No. UCB/EERC-76/17).
  • [7] Zavas, V.A., Popov, E.P., Mahin, S.A., Cyclic inelastic buckling of tubular steel braces, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1980 (Report No. UCB/EERC-80/16).
  • [8] Wakabayashi, M., et al., Experiments on the elastic-plastic behavior of bars subjected to cyclic axial loads, AIJ, Proceedings of Annual Meeting, Japan, October, 1972.
  • [9] Suzuki, T., et al., Experimental study on the elasto-plastic behavior of tensile braced frames, Transactions of the Architectural Institute of Japan, 228: 57-64, 1975.
  • [10] Inoue, K. and M. Murakami, A study on the plastic design of braced multi-story steel frames (Part 3: experimental study on the elastic plastic behavior of 3 story 3 bay braced and un-braced steel frames), Transactions of the Architectural Institute of Japan, 1978.
  • [11] Wakabayashi, M., T. Nakamura and N. Yoshida, Experimental studies on the elastic-plastic behavior of braced frames under repeated horizontal loading – Part 3: experiments of one story-one bay braced frames, Bulletin of the Disaster Prevention Research Institute, 29(4): 143-168, 1980.
  • [12] Workman, G.H., The inelastic behavior of multi-story braced frame structures subjected to earthquake excitation, U. of Michigan Research Report, September, 1969.
  • [13] Kahn, L.F., and Hanson, R.D., Inelastic cycles of axially loaded steel members, Journal of Structural Division, ASCE, No. ST5, Vol. 102, pgs 947-59, 1976.
  • [14] A.K. Jain, R.D. Hanson, S.C. Goel, Hysteretic cycles of axially loaded steel members, J. Struct. Div. 106 (8) 1777–1795, 1980
  • [15] Black R., Wenger W., Popov E., Inelastic buckling of steel struts under cyclic load reversals, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1980 (Report No. UCB/EERC-80/40).
  • [16] Popov, E.P., Black, R.G., Steel structs under severe cyclic loadings, J. Struct. Div. 107 (9) 1857-1881, 1981.
  • [17] Astaneh-Asl A., Goel S., Cyclic in-plane buckling of double-angle bracing, ASCE, J. Struct. Eng., 111 (5) 1135-1153, 1984.
  • [18] Astaneh-Asl A., Goel S., Hanson, R., Cyclic out-of-plane buckling of double-angle bracing, ASCE, J. Struct. Eng., 111 (5) 1135–1153, 1985.
  • [19] Liu Z., Goel S., Cyclic load behavior of concrete-filled tubular braces, ASCE, J. Struct. Eng., 114(7): 1488–1506, 1988.
  • [20] Foutch D., Goel S., Roeder C.W., Seismic testing of full-scale steel building—Part I, ASCE, J. Struct. Eng., 10.1061/(ASCE)0733-9445 (1987)113:11(2111), 2111–2129, 1987.
  • [21] Remennikov, A.M., Walpole, W.R., A note on compression strength reduction factor for a buckled strut in seismic-resisting braced system, Eng. Struct. 20, 8, 779–782, 1998.
  • [22] Tremblay, R., Inelastic seismic response of steel bracingmembers, J. Constr. Steel Res. 58, 5–8, 665–701, 2002.
  • [23] Shaback, B., Brown, T., Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading, Can. J. Civ. Eng. 30, 4, 745–753, 2003.
  • [24] Tremblay, R., Archambault, M.H., Filiatrault, A., Seismic response of concentrically braced steel frames made with rectangular hollow bracing members, J. Struct. Eng. ASCE 129, 12, 1626–1636, 2003.
  • [25] Lee, K., Bruneau, M., Energy dissipation of compression members in concentrically braced frames: Review of Experimental Data, J. Struct. Eng. ASCE 131, 4, 552–559, 2005.
  • [26] Han, S.W., Kim, W.T., Foutch, D.A., Seismic behavior of HSS bracing members according to width–thickness ratio under symmetric cyclic loading, J. Struct. Eng. ASCE 133, 2, 264–273, 2007.
  • [27] Broderick, B.M., Elghazouli, A.Y., Goggins, J., Earthquake testing and response analysis of concentrically-braced sub-frames, J. Constr. Steel Res. 64, 9, 997–1007, 2008.
  • [28] Lumpkin, E.J., Hsiao, P.C., Roeder, C.W., Lehman, D.E., Tsai, C.Y., Wu, A.C., Wei, C.Y., Tsai, K.C., Investigation of the seismic response of three-story special concentrically braced frames, J. Constr. Steel Res. 77, 131–144, 2012.
  • [29] Okazaki, T., Lignos, D.G., Hikino, T., Kajiwara, K., Dynamic response of a chevron concentrically braced frame, J. Struct. Eng. ASCE 139, 4, 515–525, 2013.
  • [30] Sen, A.D., Roeder, C.W., Berman, J.W., Lehman, D.E., Li, C.H., Wu, A.C., Tsai K.C., Experimental Investigation of Chevron Concentrically Braced Frames with Yielding Beams, J. Struct. Eng. ASCE 142, 12, 2016.
  • [31] Kanyilmaz, A., Role of compression diagonals in concentrically braced frames in moderate seismicity: A full scale experimental study, J. Constr. Steel Res. 133, 1–18, 2017
  • [32] Kanyilmaz, A., Castiglioni, C.A., Degée, H., Seismic behaviour of concentrically braced frames in the moderate seismicity context, Eurosteel 2017, September 13-15, Copenhagen, Denmark, 2017.
  • [33] Naderpour, M.N., Aghakouchak, A.A., Izadi, A., Cyclic behavior of concentrically braced frames with built-up braces composed of channel sections, Int. J. Steel Struct., 17-4: 1391-1403, 2017.
  • [34] Ashwin Kumar, P.C., Sahoo, D.R., Fracture ductility of hollow circular and square steel braces under cyclic loading, Thin-Walled Structures, 130, 347-361, 2018.
  • [35] Sabelli, R., Research on improving the design and analysis of earthquake resistant steel braced frames, Federal Emergency Management Agency and Earthquake Engineering Research Institute, 2001 (Report No. FEMA-EERI PF2000-9).
  • [36] Kim, J., Choi, H., Response modification factors of chevron-braced frames, Eng. Struct. 27, 2, 285–300, 2005.
  • [37] Uriz, P., Mahin, S., Towards earthquake resistant design of concentrically braced steel structures, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2008 (Report No. PEER-2008/08).
  • [38] Khandelwal, K., El-Tawil, S., Sadek, F., Progressive collapse analysis of seismically designed steel braced frames, J. Constr. Steel Res. 65, 3, 699–708, 2009
  • [39] Huang, Y., Mahin, S., Simulating the inelastic seismic behavior of steel braced frames including the effects of low cycle fatigue, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2010 (Report No. PEER-2010/104).
  • [40] Hsiao, P.C., Lehman, D.E., Roeder, C.W., Evaluation of the response modification coefficient and collapse potential of special concentrically braced frames, Earthq. Eng. Struct. Dyn. 42, 10, 1547–1564, 2013.
  • [41] Shen, J., Wen, R., Akbas, B., Doran, B., Uckan, E., Seismic demand on brace-intersected beams in two-story X-braced frames, Eng. Struct. 76, 295–312, 2014.
  • [42] J. Shen, R.Wen, B. Akbas, Mechanisms in two-story X-braced frames, J. Constr. Steel Res. 106, 258–277, 2015.
  • [43] Kazemzadeh Azad, S., Topkaya, C., Astaneh-Asl, A., Seismic behavior of concentrically braced frames designed to AISC341 and EC8 provisions, J. Constr. Steel Res, 133, 383-404, 2017.
  • [44] Kazemzadeh Azad, S., Topkaya, C., Bybordiani, M., Dynamic buckling of braces in concentrically braced frames, Earthq. Eng. Struct. Dyn., 47, 613-633, 2018.
  • [45] Faytarounia, F., Seker, O., Akbas, B., Shena, J., Seismic assessment of ductile concentrically braced frames with HSS bracings, Eng. Struct., 191, 401-416, 2019.
  • [46] Sen, A.D., Roeder, C.W., Lehman, D.E., Berman, J.W., Nonlinear modeling of concentrically braced frames, J. Constr. Steel Res, 157, 103-120, 2019.
  • [47] OPENSEES, Version 2.0 User Command-Language Manual, 2009.
  • [48] FEMA, Quantification of building seismic performance factors, FEMA-P695, Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, DC, 2009.
  • [49] ASCE, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI-7-16, Structural Engineering Institute of the American Society of Civil Engineers, Reston, VA, 2016.
  • [50] Çevre ve Şehircilik Bakanlığı, ÇYTHYDE-2018: Çelik yapıların tasarım, hesap ve yapım esasları, Ankara, 2018.
  • [51] Fell, V.B., Kanvinde A.M., Deierlein G.G., Myers, A. T., Experimental investigation of inelastic cyclic buckling and fractıre of steel braces, J. Struct. Eng. 135, USA, 2009.
  • [52] McCormick, J., Aburano, H., Ikenaga, M. and Nakashima, M., Permissible Residual Deformation Levels For Building Structures Considering Both Safety And Human Elements, The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makale
Yazarlar

Mehmet Bakır Bozkurt 0000-0002-1213-3092

Barış Serin Bu kişi benim 0000-0002-1918-2786

Yayımlanma Tarihi 1 Ocak 2021
Gönderilme Tarihi 16 Eylül 2019
Yayımlandığı Sayı Yıl 2021 Cilt: 32 Sayı: 1

Kaynak Göster

APA Bozkurt, M. B., & Serin, B. (2021). DBYBHY-2007 ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması. Teknik Dergi, 32(1), 10441-10476. https://doi.org/10.18400/tekderg.620816
AMA Bozkurt MB, Serin B. DBYBHY-2007 ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması. Teknik Dergi. Ocak 2021;32(1):10441-10476. doi:10.18400/tekderg.620816
Chicago Bozkurt, Mehmet Bakır, ve Barış Serin. “DBYBHY-2007 Ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması”. Teknik Dergi 32, sy. 1 (Ocak 2021): 10441-76. https://doi.org/10.18400/tekderg.620816.
EndNote Bozkurt MB, Serin B (01 Ocak 2021) DBYBHY-2007 ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması. Teknik Dergi 32 1 10441–10476.
IEEE M. B. Bozkurt ve B. Serin, “DBYBHY-2007 ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması”, Teknik Dergi, c. 32, sy. 1, ss. 10441–10476, 2021, doi: 10.18400/tekderg.620816.
ISNAD Bozkurt, Mehmet Bakır - Serin, Barış. “DBYBHY-2007 Ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması”. Teknik Dergi 32/1 (Ocak 2021), 10441-10476. https://doi.org/10.18400/tekderg.620816.
JAMA Bozkurt MB, Serin B. DBYBHY-2007 ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması. Teknik Dergi. 2021;32:10441–10476.
MLA Bozkurt, Mehmet Bakır ve Barış Serin. “DBYBHY-2007 Ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması”. Teknik Dergi, c. 32, sy. 1, 2021, ss. 10441-76, doi:10.18400/tekderg.620816.
Vancouver Bozkurt MB, Serin B. DBYBHY-2007 ve TBDY-2018 Esas Alınarak Boyutlandırılan MÇÇÇ’lerin Deprem Performanslarının Karşılaştırılması. Teknik Dergi. 2021;32(1):10441-76.