Araştırma Makalesi
BibTex RIS Kaynak Göster

Trend Analysis of Observed Standart Duration Maximum Precipitation for Istanbul

Yıl 2021, Cilt: 32 Sayı: 1, 10495 - 10514, 01.01.2021
https://doi.org/10.18400/tekderg.647558

Öz

Climate variability and change effects each parameter of hydrological cycle. Intensity, duration and frequency of precipitation is the basic information used in the design of bridges, culverts, city storm drainages. In this study, trend analysis of standart duration maximum precipitation was performed for 7 meteorological station equipped with pluviograph and located in İstanbul and around. Data series were divided two equal periods and precipitaion intensity-duration and frequency curves were developed. Except for Kartal MGI, significant increase trend were detected in 6 stations (Sarıyer, Kumköy, Florya, Çorlu, Göztepe ve Şile). As an example, relative difference between first and second half is 30% 5 hour standart duration and 2 years frequecy maximum precipitation for Sarıyer MGI and Q500 design flood discarge increased 60% Bekar Creek in Sarıyer.

Kaynakça

  • [1] Trenberth, K. E., (2011) Changes in precipitation with climate change. Clim Res 47, 123.
  • [2] Intergovernmental Panel on Climate Change (IPCC). (2007). “Climate change 2007: Physical science basis.” Contribution of Working Group I to the 4th Assessment Rep. of the Intergovernmental Panel on Climate Change, S. Solomon, et al., eds., Cambridge University Press, New York.
  • [3] Intergovernmental Panel on Climate Change (IPCC). (2008). “Climate change and water.” Technical Paper of the Intergovernmental Panel on Climate Change, B. C. Bates, et al., eds., IPCC Secretariat, Geneva, Switzerland.
  • [4] Kundzewicz, Z. W., et al. (2005). “Summer floods in Central Europe— Climate change track” Nat. Hazards, 36(1–2), 165–189.
  • [5] Collins, M. J. (2009). “Evidence for changing flood risk in New England since the late 20th century.” J. Am. Water Resour. Assoc., 45(2), 279–290.
  • [6] Cheng, L. & AghaKouchak, A., (2014). Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Nature: Scientific Reports, Volume 4, p. 7093.
  • [7] Bernard, M. M., (1932). Formulas for Rainfall Intensities of Long Duration, 96: 592-624.
  • [8] Hershfield, D.M., (1961) Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 Years, US Weather Bureau Technical Paper 40, Washington DC.
  • [9] Chow, V.T., (1964) Statistical and probability analysis of hydrologic data. Part I: frequency analysis, Handbook of Applied Hydrology. Sec. 8-I, 8.1-8.42, Mc Graw Hill, New York.
  • [10] Miller J.F., Frederick R.H., Tracey R.J. & Nerc. (1973) Precipitation frequency analysis of the Western US, NOAA Atlas, National Weather Service, US Department of Commerce, Siver Spring, MD.
  • [11] Koutsoyiannis D., Kozonis D. & Manetas A. A (1998) Mathematical framework for studying rainfal IDF relationships. J Hydrol, 206, 118–135.
  • [12] Linsley R.K. Jr., Kohler M.A. & Paulus J.L.H. (1975) Hydrology for Engineers, 2nd ed. Tokyo: Mc Graw Hill.
  • [13] Chen C.I., (1983) Rainfall intensity–duration–frequency formulas. J Hydrol Eng, 109, (12), 1603–1621.
  • [14] Burn, D. H., Mansour, R., Zhang, K., and Whitfield, P. H. (2011). “Trends and variability in extreme rainfall events in British Columbia.” Can. Water Resour. J., 36(1), 67–82.
  • [15] Fujibe, F., Yamazaki, N., Katsuyama, M., and Kobayashi, K. (2005). “The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years.” SOLA, 1(2005), 41–44.
  • [16] Douglas, E. M., and Fairbank, C. A. (2011). “Is precipitation in northern New England becoming more extreme? Statistical analysis of extreme rainfall in Massachusetts, New Hampshire, and Maine and updated estimates of the 100-year storm.” J. Hydrol. Eng., 10.1061/(ASCE)HE .1943-5584.0000303, 203–217.
  • [17] Villarini, G., Smith, J. A., Baeck, M. L., and Krajewski, W. F. (2011). “Examining flood frequency distributions in the midwest U.S.” J. Am. Water Resour. Assoc., 47(3), 447–463.
  • [18] Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., 741 Chambers, L. E., Yee, D. (2001). Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology, 21(3), 269-284. doi:10.1002/joc.610
  • [19] Westra, S., Alexander, L. V., & Zwiers, F. W. (2013). Global Increasing Trends in Annual 835 Maximum Daily Precipitation. Journal of Climate, 26(11), 3904-3918. 836 doi:10.1175/jcli-d-12-00502.1
  • [20] Haktanır, T., Citakoglu, H., (2014) Trend, Independence, Stationarity, and Homogeneity Tests on Maximum Rainfall Series of Standard Durations Recorded in TurkeyJournal of Hydrologic Engineering, ASCE, ISSN 1084-0699/05014009(13).
  • [21] Karahan, H., Ayvaz, M. T., Gürarslan, G., (2008) Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği. İMO Teknik Dergi, 2008 4393-4407, Yazı 290.
  • [22] Almazroui, M., Şen, Z., Mohorji, A.M., Islam, M.N., (2018) Impacts of Climate Change on Water Engineering Structures in Arid Regions: Case Studies in Turkey and Saudi Arabia, Earth Systems and Environment https://doi.org/10.1007/s41748-018-0082-6
  • [23] Korkmaz, B., Şen, K., Aksu, H., (2019) Orta Karadeniz İçin Dönemsel Yağış-Şiddet ve Süre Analizi,10. Ulusal Hidroloji Kongresi, Muğla.
  • [24] Y.S. Güçlü, E. Sisman and M.Ö. Yelegen (2016) Climate change and frequency–intensity–duration (FID) curves for Florya station, Istanbul, J Flood Risk Management.
  • [25] Karakuş, C.B., (2017) Trend Analysis Methods for Hydro-Meteorological Parameters, International Journal of Scientific and Technological Research, Vol 3, No.2, 22-32.
  • [26] Oliver, R.L.(1981) Measurement and Evaluation of Satisfaction Processes in Retail Settings. Journal Retailing, 57 (3), 25–48.
  • [27] Salas, J. D., J. R. Delleur, ~ Yevjevich, and W. L. Lane, (1980) Applied Modeling of Hydrologic Time Series, Water Resources Publications, Littleton, CO.
  • [28] Von Storch H, Navarra A. (1999). Analysis of Climate Variability: Applications of Statistical Rechniques. Springer Verlag: Berlin.
  • [29] Kendall, M.G., (1975). Rank Correlation Methods. Charles Griffin. London.
  • [30] Mann, H. B., (1945). Non-parametric Test Against Trend. Econometrika, Vol. 13, pp. 245-259.
  • [31] Yu, Y.S., Zou, S., Whittemore, D., 1993, Non-Parametric Trend Analysis of Water Quality Data of Rivers in Kansas, Journal of Hydrology 150: 61-80.
  • [32] Şen, Z., (2012) “Innovative Trend Analysis Methodology”, Journal of Hydrologıc Engıneerıng © Asce, Vol. 17, pp. 1042-1046.
  • [33] Şen, Z., (2013) “Trend Identification Simulation and Application”, Journal of Hydrological Engineering, Vol. 19.
  • [34] Çeribaşı, G., (2018)“Batı Karadeniz Havzasının Yağış Verilerinin Yenilikçi Şen Yöntemi İle Analizi”, Academic Platform Journal of Engineering and Science 6-3, 168-173.
  • [35] Sherman, C. W., (1931). Frequency and Intensity of Excessive Rainfall At Boston, Massachusetts, Transaction Paper, 95: 951-960.
  • [36] Koutsoyiannis, D., (1994). A Stochastic Disaggregation Method for Design Storm and Flood Synthesis, Journal of Hydrology, 156: 193-225
  • [37] Koutsoyiannis, D., (1996). Statistical Hydrology, National Technical University Press, Athens.
  • [38] Çölaşan Ü.E, (1969) Türkiye'nin Yağış Şiddet Süre Tekerrür Haritaları, Tarım Bakanlığı Meteoroloji İşleri Gn. Md., Ankara, 84 sayfa
  • [39] DSİ, 1990. Türkiye’ de Maksimum Yağışların Frekans Atlası, L. I., Noktasal Yağışların Frekans Analizi, DSİ Genel Müdürlüğü, Ankara.
  • [40] Finlandiya Meteoroloji Ofisi (Finnish Meteorological Institute), (2002) Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates -The Excel Template Application (MAKESENS).
  • [41] Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., Amnell, T., (2002) Detecting Trends Of Annual Values Of Atmospheric Pollutants By The Mann-Kendall Test And Sen’s Slope Estimates-The Excel Template Application Makesens, Finnish Meteorological Institute, Publications on air quality, No:31, Helsinki.
  • [42] Özdemir, H., (1972) Uygulamalı Taşkın Hidrolojisi, DSİ Matbaası, 221, Ankara.

İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri

Yıl 2021, Cilt: 32 Sayı: 1, 10495 - 10514, 01.01.2021
https://doi.org/10.18400/tekderg.647558

Öz

İklim değişkenliği ve değişimi, hidrolojik çevrimin her bir parametresini etkilemektedir. Yağışların şiddet, süre ve tekerrürleri köprüler, menfezler, şehir yağmursuyu drenajlarının tasarımında kullanılan temel bilgidir. Bu çalışmada İstanbul ve civarındaki 7 adet plüviograflı MGİ’de ölçülen standart süreli maksimum yağışların eğilim analizleri yapılmıştır. Veri serileri, iki eşit döneme bölünerek yağış şiddet tekerrür eğrileri oluşturulmuştur. Kartal MGİ haricinde 6 istasyonda (Sarıyer, Kumköy, Florya, Çorlu, Göztepe ve Şile) belirgin artış eğilimleri belirlenmiştir. Bir örnek olarak, Sarıyer meteoroloji istasyonunun 5 saatlik standart süreli 2 yıl tekerrürlü maksimum yağışları ilk dönem ve ikinci dönem hesaplanan bağıl farkları %30 ve Sarıyer’de bulunan Bekar deresinde Q500 taşkın debisindeki %60 artış şeklindedir.

Kaynakça

  • [1] Trenberth, K. E., (2011) Changes in precipitation with climate change. Clim Res 47, 123.
  • [2] Intergovernmental Panel on Climate Change (IPCC). (2007). “Climate change 2007: Physical science basis.” Contribution of Working Group I to the 4th Assessment Rep. of the Intergovernmental Panel on Climate Change, S. Solomon, et al., eds., Cambridge University Press, New York.
  • [3] Intergovernmental Panel on Climate Change (IPCC). (2008). “Climate change and water.” Technical Paper of the Intergovernmental Panel on Climate Change, B. C. Bates, et al., eds., IPCC Secretariat, Geneva, Switzerland.
  • [4] Kundzewicz, Z. W., et al. (2005). “Summer floods in Central Europe— Climate change track” Nat. Hazards, 36(1–2), 165–189.
  • [5] Collins, M. J. (2009). “Evidence for changing flood risk in New England since the late 20th century.” J. Am. Water Resour. Assoc., 45(2), 279–290.
  • [6] Cheng, L. & AghaKouchak, A., (2014). Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Nature: Scientific Reports, Volume 4, p. 7093.
  • [7] Bernard, M. M., (1932). Formulas for Rainfall Intensities of Long Duration, 96: 592-624.
  • [8] Hershfield, D.M., (1961) Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 Years, US Weather Bureau Technical Paper 40, Washington DC.
  • [9] Chow, V.T., (1964) Statistical and probability analysis of hydrologic data. Part I: frequency analysis, Handbook of Applied Hydrology. Sec. 8-I, 8.1-8.42, Mc Graw Hill, New York.
  • [10] Miller J.F., Frederick R.H., Tracey R.J. & Nerc. (1973) Precipitation frequency analysis of the Western US, NOAA Atlas, National Weather Service, US Department of Commerce, Siver Spring, MD.
  • [11] Koutsoyiannis D., Kozonis D. & Manetas A. A (1998) Mathematical framework for studying rainfal IDF relationships. J Hydrol, 206, 118–135.
  • [12] Linsley R.K. Jr., Kohler M.A. & Paulus J.L.H. (1975) Hydrology for Engineers, 2nd ed. Tokyo: Mc Graw Hill.
  • [13] Chen C.I., (1983) Rainfall intensity–duration–frequency formulas. J Hydrol Eng, 109, (12), 1603–1621.
  • [14] Burn, D. H., Mansour, R., Zhang, K., and Whitfield, P. H. (2011). “Trends and variability in extreme rainfall events in British Columbia.” Can. Water Resour. J., 36(1), 67–82.
  • [15] Fujibe, F., Yamazaki, N., Katsuyama, M., and Kobayashi, K. (2005). “The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years.” SOLA, 1(2005), 41–44.
  • [16] Douglas, E. M., and Fairbank, C. A. (2011). “Is precipitation in northern New England becoming more extreme? Statistical analysis of extreme rainfall in Massachusetts, New Hampshire, and Maine and updated estimates of the 100-year storm.” J. Hydrol. Eng., 10.1061/(ASCE)HE .1943-5584.0000303, 203–217.
  • [17] Villarini, G., Smith, J. A., Baeck, M. L., and Krajewski, W. F. (2011). “Examining flood frequency distributions in the midwest U.S.” J. Am. Water Resour. Assoc., 47(3), 447–463.
  • [18] Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., 741 Chambers, L. E., Yee, D. (2001). Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology, 21(3), 269-284. doi:10.1002/joc.610
  • [19] Westra, S., Alexander, L. V., & Zwiers, F. W. (2013). Global Increasing Trends in Annual 835 Maximum Daily Precipitation. Journal of Climate, 26(11), 3904-3918. 836 doi:10.1175/jcli-d-12-00502.1
  • [20] Haktanır, T., Citakoglu, H., (2014) Trend, Independence, Stationarity, and Homogeneity Tests on Maximum Rainfall Series of Standard Durations Recorded in TurkeyJournal of Hydrologic Engineering, ASCE, ISSN 1084-0699/05014009(13).
  • [21] Karahan, H., Ayvaz, M. T., Gürarslan, G., (2008) Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği. İMO Teknik Dergi, 2008 4393-4407, Yazı 290.
  • [22] Almazroui, M., Şen, Z., Mohorji, A.M., Islam, M.N., (2018) Impacts of Climate Change on Water Engineering Structures in Arid Regions: Case Studies in Turkey and Saudi Arabia, Earth Systems and Environment https://doi.org/10.1007/s41748-018-0082-6
  • [23] Korkmaz, B., Şen, K., Aksu, H., (2019) Orta Karadeniz İçin Dönemsel Yağış-Şiddet ve Süre Analizi,10. Ulusal Hidroloji Kongresi, Muğla.
  • [24] Y.S. Güçlü, E. Sisman and M.Ö. Yelegen (2016) Climate change and frequency–intensity–duration (FID) curves for Florya station, Istanbul, J Flood Risk Management.
  • [25] Karakuş, C.B., (2017) Trend Analysis Methods for Hydro-Meteorological Parameters, International Journal of Scientific and Technological Research, Vol 3, No.2, 22-32.
  • [26] Oliver, R.L.(1981) Measurement and Evaluation of Satisfaction Processes in Retail Settings. Journal Retailing, 57 (3), 25–48.
  • [27] Salas, J. D., J. R. Delleur, ~ Yevjevich, and W. L. Lane, (1980) Applied Modeling of Hydrologic Time Series, Water Resources Publications, Littleton, CO.
  • [28] Von Storch H, Navarra A. (1999). Analysis of Climate Variability: Applications of Statistical Rechniques. Springer Verlag: Berlin.
  • [29] Kendall, M.G., (1975). Rank Correlation Methods. Charles Griffin. London.
  • [30] Mann, H. B., (1945). Non-parametric Test Against Trend. Econometrika, Vol. 13, pp. 245-259.
  • [31] Yu, Y.S., Zou, S., Whittemore, D., 1993, Non-Parametric Trend Analysis of Water Quality Data of Rivers in Kansas, Journal of Hydrology 150: 61-80.
  • [32] Şen, Z., (2012) “Innovative Trend Analysis Methodology”, Journal of Hydrologıc Engıneerıng © Asce, Vol. 17, pp. 1042-1046.
  • [33] Şen, Z., (2013) “Trend Identification Simulation and Application”, Journal of Hydrological Engineering, Vol. 19.
  • [34] Çeribaşı, G., (2018)“Batı Karadeniz Havzasının Yağış Verilerinin Yenilikçi Şen Yöntemi İle Analizi”, Academic Platform Journal of Engineering and Science 6-3, 168-173.
  • [35] Sherman, C. W., (1931). Frequency and Intensity of Excessive Rainfall At Boston, Massachusetts, Transaction Paper, 95: 951-960.
  • [36] Koutsoyiannis, D., (1994). A Stochastic Disaggregation Method for Design Storm and Flood Synthesis, Journal of Hydrology, 156: 193-225
  • [37] Koutsoyiannis, D., (1996). Statistical Hydrology, National Technical University Press, Athens.
  • [38] Çölaşan Ü.E, (1969) Türkiye'nin Yağış Şiddet Süre Tekerrür Haritaları, Tarım Bakanlığı Meteoroloji İşleri Gn. Md., Ankara, 84 sayfa
  • [39] DSİ, 1990. Türkiye’ de Maksimum Yağışların Frekans Atlası, L. I., Noktasal Yağışların Frekans Analizi, DSİ Genel Müdürlüğü, Ankara.
  • [40] Finlandiya Meteoroloji Ofisi (Finnish Meteorological Institute), (2002) Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates -The Excel Template Application (MAKESENS).
  • [41] Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., Amnell, T., (2002) Detecting Trends Of Annual Values Of Atmospheric Pollutants By The Mann-Kendall Test And Sen’s Slope Estimates-The Excel Template Application Makesens, Finnish Meteorological Institute, Publications on air quality, No:31, Helsinki.
  • [42] Özdemir, H., (1972) Uygulamalı Taşkın Hidrolojisi, DSİ Matbaası, 221, Ankara.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Kevser Şen Bu kişi benim 0000-0002-7323-0312

Hakan Aksu 0000-0003-4686-7446

Yayımlanma Tarihi 1 Ocak 2021
Gönderilme Tarihi 16 Kasım 2019
Yayımlandığı Sayı Yıl 2021 Cilt: 32 Sayı: 1

Kaynak Göster

APA Şen, K., & Aksu, H. (2021). İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri. Teknik Dergi, 32(1), 10495-10514. https://doi.org/10.18400/tekderg.647558
AMA Şen K, Aksu H. İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri. Teknik Dergi. Ocak 2021;32(1):10495-10514. doi:10.18400/tekderg.647558
Chicago Şen, Kevser, ve Hakan Aksu. “İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri”. Teknik Dergi 32, sy. 1 (Ocak 2021): 10495-514. https://doi.org/10.18400/tekderg.647558.
EndNote Şen K, Aksu H (01 Ocak 2021) İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri. Teknik Dergi 32 1 10495–10514.
IEEE K. Şen ve H. Aksu, “İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri”, Teknik Dergi, c. 32, sy. 1, ss. 10495–10514, 2021, doi: 10.18400/tekderg.647558.
ISNAD Şen, Kevser - Aksu, Hakan. “İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri”. Teknik Dergi 32/1 (Ocak 2021), 10495-10514. https://doi.org/10.18400/tekderg.647558.
JAMA Şen K, Aksu H. İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri. Teknik Dergi. 2021;32:10495–10514.
MLA Şen, Kevser ve Hakan Aksu. “İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri”. Teknik Dergi, c. 32, sy. 1, 2021, ss. 10495-14, doi:10.18400/tekderg.647558.
Vancouver Şen K, Aksu H. İstanbul İçin Standart Süreli Gözlenen En Büyük Yağışların Eğilimleri. Teknik Dergi. 2021;32(1):10495-514.

Cited By